Show commands: SageMath
Rank
The elliptic curves in class 1225.f have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1225.f do not have complex multiplication.Modular form 1225.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 37 \\ 37 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1225.f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1225.f1 | 1225e2 | \([1, 1, 0, -254901700, 1566310159625]\) | \(-162677523113838677\) | \(-11259376953125\) | \([]\) | \(62160\) | \(3.0482\) | |
| 1225.f2 | 1225e1 | \([1, 1, 0, -9825, -412250]\) | \(-9317\) | \(-11259376953125\) | \([]\) | \(1680\) | \(1.2427\) | \(\Gamma_0(N)\)-optimal |