Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1224.a1 |
1224e1 |
1224.a |
1224e |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.124696278$ |
$1$ |
|
$10$ |
$1920$ |
$1.155319$ |
$57530252288/38336139$ |
$1.04113$ |
$5.19171$ |
$[0, 0, 0, 4596, 46676]$ |
\(y^2=x^3+4596x+46676\) |
102.2.0.? |
$[(10, 306)]$ |
1224.b1 |
1224c3 |
1224.b |
1224c |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{11} \cdot 3^{14} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2048$ |
$1.001610$ |
$22994537186/111537$ |
$1.03807$ |
$5.35520$ |
$[0, 0, 0, -6771, 213550]$ |
\(y^2=x^3-6771x+213550\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 24.24.0-8.m.1.7, 136.24.0.?, $\ldots$ |
$[ ]$ |
1224.b2 |
1224c2 |
1224.b |
1224c |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$1024$ |
$0.655037$ |
$40873252/23409$ |
$1.13826$ |
$4.36704$ |
$[0, 0, 0, -651, -650]$ |
\(y^2=x^3-651x-650\) |
2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 68.12.0.b.1, $\ldots$ |
$[ ]$ |
1224.b3 |
1224c1 |
1224.b |
1224c |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$0.308464$ |
$61918288/153$ |
$0.87866$ |
$4.23048$ |
$[0, 0, 0, -471, -3926]$ |
\(y^2=x^3-471x-3926\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.8, $\ldots$ |
$[ ]$ |
1224.b4 |
1224c4 |
1224.b |
1224c |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2048$ |
$1.001610$ |
$1285471294/751689$ |
$1.05433$ |
$4.94955$ |
$[0, 0, 0, 2589, -5186]$ |
\(y^2=x^3+2589x-5186\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 12.12.0-4.c.1.1, 24.24.0-8.d.1.1, $\ldots$ |
$[ ]$ |
1224.c1 |
1224a1 |
1224.c |
1224a |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.149821697$ |
$1$ |
|
$8$ |
$64$ |
$-0.337991$ |
$27648/17$ |
$0.80344$ |
$2.68195$ |
$[0, 0, 0, 12, 4]$ |
\(y^2=x^3+12x+4\) |
102.2.0.? |
$[(2, 6)]$ |
1224.d1 |
1224d2 |
1224.d |
1224d |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{11} \cdot 3^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$136$ |
$12$ |
$0$ |
$2.459554506$ |
$1$ |
|
$3$ |
$384$ |
$0.417461$ |
$6097250/289$ |
$0.87700$ |
$4.19693$ |
$[0, 0, 0, -435, -3346]$ |
\(y^2=x^3-435x-3346\) |
2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? |
$[(-10, 2)]$ |
1224.d2 |
1224d1 |
1224.d |
1224d |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$136$ |
$12$ |
$0$ |
$1.229777253$ |
$1$ |
|
$7$ |
$192$ |
$0.070888$ |
$62500/17$ |
$0.89869$ |
$3.45520$ |
$[0, 0, 0, -75, 182]$ |
\(y^2=x^3-75x+182\) |
2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? |
$[(-2, 18)]$ |
1224.e1 |
1224h1 |
1224.e |
1224h |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{10} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$256$ |
$0.355572$ |
$12194500/153$ |
$0.87537$ |
$4.19693$ |
$[0, 0, 0, -435, 3454]$ |
\(y^2=x^3-435x+3454\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[ ]$ |
1224.e2 |
1224h2 |
1224.e |
1224h |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{10} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$0.702146$ |
$-31250/23409$ |
$1.14865$ |
$4.46318$ |
$[0, 0, 0, -75, 8998]$ |
\(y^2=x^3-75x+8998\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[ ]$ |
1224.f1 |
1224f1 |
1224.f |
1224f |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.588746284$ |
$1$ |
|
$4$ |
$192$ |
$0.211315$ |
$27648/17$ |
$0.80344$ |
$3.60906$ |
$[0, 0, 0, 108, -108]$ |
\(y^2=x^3+108x-108\) |
102.2.0.? |
$[(12, 54)]$ |
1224.g1 |
1224b1 |
1224.g |
1224b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$192$ |
$-0.058898$ |
$35152/17$ |
$0.75928$ |
$3.17928$ |
$[0, 0, 0, -39, -38]$ |
\(y^2=x^3-39x-38\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.1, 34.6.0.a.1, 68.24.0.f.1, $\ldots$ |
$[ ]$ |
1224.g2 |
1224b2 |
1224.g |
1224b |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$408$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$384$ |
$0.287676$ |
$415292/289$ |
$0.87236$ |
$3.72157$ |
$[0, 0, 0, 141, -290]$ |
\(y^2=x^3+141x-290\) |
2.3.0.a.1, 4.6.0.a.1, 12.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ |
$[ ]$ |
1224.h1 |
1224g1 |
1224.h |
1224g |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{11} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.536171262$ |
$1$ |
|
$4$ |
$640$ |
$0.395303$ |
$-2249728/4131$ |
$0.90547$ |
$3.96516$ |
$[0, 0, 0, -156, -1532]$ |
\(y^2=x^3-156x-1532\) |
102.2.0.? |
$[(32, 162)]$ |