Properties

Label 122018i
Number of curves $1$
Conductor $122018$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122018i1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(13\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122018i do not have complex multiplication.

Modular form 122018.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 4 q^{5} - q^{6} - 2 q^{7} - q^{8} - 2 q^{9} + 4 q^{10} - 3 q^{11} + q^{12} + 2 q^{14} - 4 q^{15} + q^{16} - 6 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 122018i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.o1 122018i1 \([1, 0, 1, -6299394053, -192440940653648]\) \(-934165699635529/21632\) \(-640166284668772045378688\) \([]\) \(128701440\) \(4.0907\) \(\Gamma_0(N)\)-optimal