Properties

Label 122018h
Number of curves 11
Conductor 122018122018
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122018h1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
131311
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 1+6T+11T2 1 + 6 T + 11 T^{2} 1.11.g
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122018h do not have complex multiplication.

Modular form 122018.2.a.h

Copy content sage:E.q_eigenform(10)
 
qq2+q3+q4q5q6+q7q82q9+q10+q12q14q15+q163q17+2q18+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} - 2 q^{9} + q^{10} + q^{12} - q^{14} - q^{15} + q^{16} - 3 q^{17} + 2 q^{18} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 122018h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.q1 122018h1 [1,0,1,761341,116391650][1, 0, 1, 761341, -116391650] 214921799/150176214921799/150176 34102188614360326304-34102188614360326304 [][] 24192002419200 2.43652.4365 Γ0(N)\Gamma_0(N)-optimal