sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 122018h1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
13 | 1 |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+T+3T2 |
1.3.b
|
5 |
1−3T+5T2 |
1.5.ad
|
7 |
1−T+7T2 |
1.7.ab
|
11 |
1+6T+11T2 |
1.11.g
|
17 |
1+3T+17T2 |
1.17.d
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 122018h do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 122018h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
122018.q1 |
122018h1 |
[1,0,1,761341,−116391650] |
214921799/150176 |
−34102188614360326304 |
[] |
2419200 |
2.4365
|
Γ0(N)-optimal |