Properties

Label 122018c
Number of curves 11
Conductor 122018122018
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122018c1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
131311
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
55 1+5T2 1 + 5 T^{2} 1.5.a
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 13T+29T2 1 - 3 T + 29 T^{2} 1.29.ad
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122018c do not have complex multiplication.

Modular form 122018.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2+3q3+q42q53q6+3q7q8+6q9+2q10+2q11+3q123q146q15+q16q176q18+O(q20)q - q^{2} + 3 q^{3} + q^{4} - 2 q^{5} - 3 q^{6} + 3 q^{7} - q^{8} + 6 q^{9} + 2 q^{10} + 2 q^{11} + 3 q^{12} - 3 q^{14} - 6 q^{15} + q^{16} - q^{17} - 6 q^{18} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 122018c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122018.r1 122018c1 [1,1,0,72448,170017784][1, -1, 0, -72448, 170017784] 27/8-27/8 12460415070631657688-12460415070631657688 [][] 51163205116320 2.34332.3433 Γ0(N)\Gamma_0(N)-optimal