sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 122018c1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
13 | 1 |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
5 |
1+5T2 |
1.5.a
|
7 |
1+7T2 |
1.7.a
|
11 |
1+3T+11T2 |
1.11.d
|
17 |
1−7T+17T2 |
1.17.ah
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−3T+29T2 |
1.29.ad
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 122018c do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 122018c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
122018.r1 |
122018c1 |
[1,−1,0,−72448,170017784] |
−27/8 |
−12460415070631657688 |
[] |
5116320 |
2.3433
|
Γ0(N)-optimal |