# Properties

 Label 121c Number of curves $2$ Conductor $121$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("c1")

sage: E.isogeny_class()

## Elliptic curves in class 121c

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
121.c2 121c1 [1, 1, 0, -2, -7] [] 6 $$\Gamma_0(N)$$-optimal
121.c1 121c2 [1, 1, 0, -3632, 82757] [] 66

## Rank

sage: E.rank()

The elliptic curves in class 121c have rank $$0$$.

## Complex multiplication

The elliptic curves in class 121c do not have complex multiplication.

## Modular form121.2.a.c

sage: E.q_eigenform(10)

$$q + q^{2} + 2q^{3} - q^{4} + q^{5} + 2q^{6} - 2q^{7} - 3q^{8} + q^{9} + q^{10} - 2q^{12} + q^{13} - 2q^{14} + 2q^{15} - q^{16} - 5q^{17} + q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 