Show commands: SageMath
Rank
The elliptic curves in class 121968fu have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 121968fu do not have complex multiplication.Modular form 121968.2.a.fu
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 121968fu
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 121968.fb4 | 121968fu1 | \([0, 0, 0, 60621, 3500530]\) | \(4657463/3696\) | \(-19551295952584704\) | \([2]\) | \(737280\) | \(1.8139\) | \(\Gamma_0(N)\)-optimal |
| 121968.fb3 | 121968fu2 | \([0, 0, 0, -287859, 30333490]\) | \(498677257/213444\) | \(1129087341261766656\) | \([2, 2]\) | \(1474560\) | \(2.1605\) | |
| 121968.fb2 | 121968fu3 | \([0, 0, 0, -2204499, -1238865518]\) | \(223980311017/4278582\) | \(22633068977110867968\) | \([2]\) | \(2949120\) | \(2.5071\) | |
| 121968.fb1 | 121968fu4 | \([0, 0, 0, -3946899, 3016841938]\) | \(1285429208617/614922\) | \(3252846864111280128\) | \([2]\) | \(2949120\) | \(2.5071\) |