Properties

Label 121968fu
Number of curves $4$
Conductor $121968$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 121968fu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121968fu do not have complex multiplication.

Modular form 121968.2.a.fu

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{7} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 121968fu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121968.fb4 121968fu1 \([0, 0, 0, 60621, 3500530]\) \(4657463/3696\) \(-19551295952584704\) \([2]\) \(737280\) \(1.8139\) \(\Gamma_0(N)\)-optimal
121968.fb3 121968fu2 \([0, 0, 0, -287859, 30333490]\) \(498677257/213444\) \(1129087341261766656\) \([2, 2]\) \(1474560\) \(2.1605\)  
121968.fb2 121968fu3 \([0, 0, 0, -2204499, -1238865518]\) \(223980311017/4278582\) \(22633068977110867968\) \([2]\) \(2949120\) \(2.5071\)  
121968.fb1 121968fu4 \([0, 0, 0, -3946899, 3016841938]\) \(1285429208617/614922\) \(3252846864111280128\) \([2]\) \(2949120\) \(2.5071\)