Show commands: SageMath
Rank
The elliptic curves in class 12138bb have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 12138bb do not have complex multiplication.Modular form 12138.2.a.bb
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 12138bb
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 12138.bc5 | 12138bb1 | \([1, 0, 0, -1162, 33572]\) | \(-7189057/16128\) | \(-389290712832\) | \([2]\) | \(20480\) | \(0.91256\) | \(\Gamma_0(N)\)-optimal |
| 12138.bc4 | 12138bb2 | \([1, 0, 0, -24282, 1453140]\) | \(65597103937/63504\) | \(1532832181776\) | \([2, 2]\) | \(40960\) | \(1.2591\) | |
| 12138.bc3 | 12138bb3 | \([1, 0, 0, -30062, 707520]\) | \(124475734657/63011844\) | \(1520952732367236\) | \([2, 2]\) | \(81920\) | \(1.6057\) | |
| 12138.bc1 | 12138bb4 | \([1, 0, 0, -388422, 93143592]\) | \(268498407453697/252\) | \(6082667388\) | \([2]\) | \(81920\) | \(1.6057\) | |
| 12138.bc2 | 12138bb5 | \([1, 0, 0, -264152, -51775458]\) | \(84448510979617/933897762\) | \(22542021669220578\) | \([2]\) | \(163840\) | \(1.9523\) | |
| 12138.bc6 | 12138bb6 | \([1, 0, 0, 111548, 5493938]\) | \(6359387729183/4218578658\) | \(-101826233439402402\) | \([2]\) | \(163840\) | \(1.9523\) |