Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -248263722, -1495363594140])

gp: E = ellinit([1, 0, 0, -248263722, -1495363594140])

magma: E := EllipticCurve([1, 0, 0, -248263722, -1495363594140]);

$$y^2+xy=x^3-248263722x-1495363594140$$ ## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-9198, 104634\right)$$ $$\hat{h}(P)$$ ≈ $4.7919302403351336048582581719$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-8476, 4238\right)$$, $$\left(18180, -9090\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-9198, 104634\right)$$, $$\left(-9198, -95436\right)$$, $$\left(-8476, 4238\right)$$, $$\left(18180, -9090\right)$$ ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$12138$$ = $$2 \cdot 3 \cdot 7 \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$13335258025968770331349056$$ = $$2^{6} \cdot 3^{16} \cdot 7^{4} \cdot 17^{10}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{70108386184777836280897}{552468975892674624}$$ = $$2^{-6} \cdot 3^{-16} \cdot 7^{-4} \cdot 17^{-4} \cdot 41234113^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$3.6491620510711531479509583693\dots$$ Stable Faltings height: $$2.2325553790430451078261910604\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.7919302403351336048582581719\dots$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.038052010781995546916856521541\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$768$$  = $$( 2 \cdot 3 )\cdot2^{4}\cdot2\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 12138.2.a.ba

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{3} + q^{4} + 2q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + 2q^{10} - 4q^{11} + q^{12} - 2q^{13} - q^{14} + 2q^{15} + q^{16} + q^{18} + 4q^{19} + O(q^{20})$$ For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 4423680 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$8.7524438962465447853615523107910739147$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$3$$ $$16$$ $$I_{16}$$ Split multiplicative -1 1 16 16
$$7$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$17$$ $$4$$ $$I_4^{*}$$ Additive 1 2 10 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X200e.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 0 & 1 \end{array}\right)$ and has index 96.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split split ordinary nonsplit ordinary ordinary add ordinary ordinary ordinary ss ordinary ordinary ordinary ss 7 2 1 1 1 1 - 1 1 1 1,1 1 1 1 1,1 2 0 0 0 0 0 - 0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 12138.ba consists of 3 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-17})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{-2}, \sqrt{17})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{2}, \sqrt{17})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.5473632256.1 $$\Z/4\Z \times \Z/8\Z$$ Not in database $8$ 8.0.841100226985984.69 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.4.841100226985984.23 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.6327518887936.11 $$\Z/2\Z \times \Z/16\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/24\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.