# Properties

 Label 121275.cf4 Conductor 121275 Discriminant 2166934650890625 j-invariant $$\frac{4354703137}{1617}$$ CM no Rank 0 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 1, -375080, 88481922]); // or

magma: E := EllipticCurve("121275eq1");

sage: E = EllipticCurve([1, -1, 1, -375080, 88481922]) # or

sage: E = EllipticCurve("121275eq1")

gp: E = ellinit([1, -1, 1, -375080, 88481922]) \\ or

gp: E = ellinit("121275eq1")

$$y^2 + x y + y = x^{3} - x^{2} - 375080 x + 88481922$$

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(359, -180\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(359, -180\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$121275$$ = $$3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$2166934650890625$$ = $$3^{7} \cdot 5^{6} \cdot 7^{8} \cdot 11$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{4354703137}{1617}$$ = $$3^{-1} \cdot 7^{-2} \cdot 11^{-1} \cdot 23^{3} \cdot 71^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.454604594295$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$16$$  = $$2^{2}\cdot2\cdot2\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 121275.2.a.cf

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} - q^{4} + 3q^{8} + q^{11} + 6q^{13} - q^{16} - 2q^{17} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 983040 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$1.81841837718$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$4$$ $$I_1^{*}$$ Additive -1 2 7 1
$$5$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0
$$7$$ $$2$$ $$I_2^{*}$$ Additive -1 2 8 2
$$11$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 ordinary add add add split 7 - - - 1 0 - - - 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 121275.cf consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{385})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{33})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{105})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(\sqrt{5}, \sqrt{21})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{33}, \sqrt{105})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{77}, \sqrt{105})$$ $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.