Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 120b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
120.a4 | 120b1 | \([0, 1, 0, 4, 0]\) | \(21296/15\) | \(-3840\) | \([2]\) | \(8\) | \(-0.62374\) | \(\Gamma_0(N)\)-optimal |
120.a3 | 120b2 | \([0, 1, 0, -16, -16]\) | \(470596/225\) | \(230400\) | \([2, 2]\) | \(16\) | \(-0.27717\) | |
120.a1 | 120b3 | \([0, 1, 0, -216, -1296]\) | \(546718898/405\) | \(829440\) | \([2]\) | \(32\) | \(0.069403\) | |
120.a2 | 120b4 | \([0, 1, 0, -136, 560]\) | \(136835858/1875\) | \(3840000\) | \([2]\) | \(32\) | \(0.069403\) |
Rank
sage: E.rank()
The elliptic curves in class 120b have rank \(0\).
Complex multiplication
The elliptic curves in class 120b do not have complex multiplication.Modular form 120.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.