Properties

Label 120b
Number of curves 4
Conductor 120
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("120.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 120b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
120.a4 120b1 [0, 1, 0, 4, 0] [2] 8 \(\Gamma_0(N)\)-optimal
120.a3 120b2 [0, 1, 0, -16, -16] [2, 2] 16  
120.a1 120b3 [0, 1, 0, -216, -1296] [2] 32  
120.a2 120b4 [0, 1, 0, -136, 560] [2] 32  

Rank

sage: E.rank()
 

The elliptic curves in class 120b have rank \(0\).

Modular form 120.2.a.a

sage: E.q_eigenform(10)
 
\( q + q^{3} - q^{5} + 4q^{7} + q^{9} - 6q^{13} - q^{15} - 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.