Show commands: SageMath
Rank
The elliptic curves in class 1200a have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1200a do not have complex multiplication.Modular form 1200.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1200a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1200.d5 | 1200a1 | \([0, -1, 0, 17, -38]\) | \(2048/3\) | \(-750000\) | \([2]\) | \(128\) | \(-0.18721\) | \(\Gamma_0(N)\)-optimal |
| 1200.d4 | 1200a2 | \([0, -1, 0, -108, -288]\) | \(35152/9\) | \(36000000\) | \([2, 2]\) | \(256\) | \(0.15937\) | |
| 1200.d2 | 1200a3 | \([0, -1, 0, -1608, -24288]\) | \(28756228/3\) | \(48000000\) | \([2]\) | \(512\) | \(0.50594\) | |
| 1200.d3 | 1200a4 | \([0, -1, 0, -608, 5712]\) | \(1556068/81\) | \(1296000000\) | \([2, 2]\) | \(512\) | \(0.50594\) | |
| 1200.d1 | 1200a5 | \([0, -1, 0, -9608, 365712]\) | \(3065617154/9\) | \(288000000\) | \([2]\) | \(1024\) | \(0.85251\) | |
| 1200.d6 | 1200a6 | \([0, -1, 0, 392, 21712]\) | \(207646/6561\) | \(-209952000000\) | \([2]\) | \(1024\) | \(0.85251\) |