Properties

Label 1200a
Number of curves $6$
Conductor $1200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1200a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1200a do not have complex multiplication.

Modular form 1200.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1200a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1200.d5 1200a1 \([0, -1, 0, 17, -38]\) \(2048/3\) \(-750000\) \([2]\) \(128\) \(-0.18721\) \(\Gamma_0(N)\)-optimal
1200.d4 1200a2 \([0, -1, 0, -108, -288]\) \(35152/9\) \(36000000\) \([2, 2]\) \(256\) \(0.15937\)  
1200.d2 1200a3 \([0, -1, 0, -1608, -24288]\) \(28756228/3\) \(48000000\) \([2]\) \(512\) \(0.50594\)  
1200.d3 1200a4 \([0, -1, 0, -608, 5712]\) \(1556068/81\) \(1296000000\) \([2, 2]\) \(512\) \(0.50594\)  
1200.d1 1200a5 \([0, -1, 0, -9608, 365712]\) \(3065617154/9\) \(288000000\) \([2]\) \(1024\) \(0.85251\)  
1200.d6 1200a6 \([0, -1, 0, 392, 21712]\) \(207646/6561\) \(-209952000000\) \([2]\) \(1024\) \(0.85251\)