Properties

Label 1200.s
Number of curves $2$
Conductor $1200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1200.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1200.s1 1200s1 \([0, 1, 0, -13, -22]\) \(131072/9\) \(18000\) \([2]\) \(96\) \(-0.43525\) \(\Gamma_0(N)\)-optimal
1200.s2 1200s2 \([0, 1, 0, 12, -72]\) \(5488/81\) \(-2592000\) \([2]\) \(192\) \(-0.088679\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1200.s have rank \(0\).

Complex multiplication

The elliptic curves in class 1200.s do not have complex multiplication.

Modular form 1200.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{3} + 4q^{7} + q^{9} + 4q^{11} - 4q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.