Properties

Label 1200.m
Number of curves $4$
Conductor $1200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1200.m have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1200.m do not have complex multiplication.

Modular form 1200.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{7} + q^{9} - 2 q^{11} + 6 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 5 & 2 & 10 \\ 5 & 1 & 10 & 2 \\ 2 & 10 & 1 & 5 \\ 10 & 2 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1200.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1200.m1 1200q4 \([0, 1, 0, -331208, -73238412]\) \(502270291349/1889568\) \(15116544000000000\) \([2]\) \(9600\) \(1.9639\)  
1200.m2 1200q2 \([0, 1, 0, -21208, 1181588]\) \(131872229/18\) \(144000000000\) \([2]\) \(1920\) \(1.1592\)  
1200.m3 1200q3 \([0, 1, 0, -11208, -2198412]\) \(-19465109/248832\) \(-1990656000000000\) \([2]\) \(4800\) \(1.6173\)  
1200.m4 1200q1 \([0, 1, 0, -1208, 21588]\) \(-24389/12\) \(-96000000000\) \([2]\) \(960\) \(0.81260\) \(\Gamma_0(N)\)-optimal