Properties

Label 1200.k
Number of curves $8$
Conductor $1200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("1200.k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1200.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1200.k1 1200p8 [0, 1, 0, -2133408, 1198675188] [4] 13824  
1200.k2 1200p7 [0, 1, 0, -181408, 3987188] [2] 13824  
1200.k3 1200p6 [0, 1, 0, -133408, 18675188] [2, 2] 6912  
1200.k4 1200p4 [0, 1, 0, -115408, -15128812] [2] 4608  
1200.k5 1200p5 [0, 1, 0, -27408, 1495188] [4] 4608  
1200.k6 1200p2 [0, 1, 0, -7408, -224812] [2, 2] 2304  
1200.k7 1200p3 [0, 1, 0, -5408, 499188] [2] 3456  
1200.k8 1200p1 [0, 1, 0, 592, -16812] [2] 1152 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1200.k have rank \(1\).

Modular form 1200.2.a.k

sage: E.q_eigenform(10)
 
\( q + q^{3} - 4q^{7} + q^{9} - 2q^{13} - 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.