sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 11a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
11 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+2T+2T2 |
1.2.c
|
3 |
1+T+3T2 |
1.3.b
|
5 |
1−T+5T2 |
1.5.ab
|
7 |
1+2T+7T2 |
1.7.c
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+19T2 |
1.19.a
|
23 |
1+T+23T2 |
1.23.b
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 11a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛15551255251⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 11a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
11.a2 |
11a1 |
[0,−1,1,−10,−20] |
−122023936/161051 |
−161051 |
[5] |
1 |
−0.30801
|
Γ0(N)-optimal |
11.a1 |
11a2 |
[0,−1,1,−7820,−263580] |
−52893159101157376/11 |
−11 |
[] |
5 |
0.49671
|
|
11.a3 |
11a3 |
[0,−1,1,0,0] |
−4096/11 |
−11 |
[5] |
5 |
−1.1127
|
|