Properties

Label 11a
Number of curves 33
Conductor 1111
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
11111T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T+2T2 1 + 2 T + 2 T^{2} 1.2.c
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11a do not have complex multiplication.

Modular form 11.2.a.a

Copy content sage:E.q_eigenform(10)
 
q2q2q3+2q4+q5+2q62q72q92q10+q112q12+4q13+4q14q154q162q17+4q18+O(q20)q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{9} - 2 q^{10} + q^{11} - 2 q^{12} + 4 q^{13} + 4 q^{14} - q^{15} - 4 q^{16} - 2 q^{17} + 4 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(15551255251)\left(\begin{array}{rrr} 1 & 5 & 5 \\ 5 & 1 & 25 \\ 5 & 25 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 11a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11.a2 11a1 [0,1,1,10,20][0, -1, 1, -10, -20] 122023936/161051-122023936/161051 161051-161051 [5][5] 11 0.30801-0.30801 Γ0(N)\Gamma_0(N)-optimal
11.a1 11a2 [0,1,1,7820,263580][0, -1, 1, -7820, -263580] 52893159101157376/11-52893159101157376/11 11-11 [][] 55 0.496710.49671  
11.a3 11a3 [0,1,1,0,0][0, -1, 1, 0, 0] 4096/11-4096/11 11-11 [5][5] 55 1.1127-1.1127