Properties

Label 119952.fs
Number of curves $2$
Conductor $119952$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("fs1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 119952.fs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119952.fs1 119952ez1 \([0, 0, 0, -25284, 1490335]\) \(1302642688/54621\) \(74954100722256\) \([2]\) \(331776\) \(1.4271\) \(\Gamma_0(N)\)-optimal
119952.fs2 119952ez2 \([0, 0, 0, 12201, 5531218]\) \(9148592/607257\) \(-13333011799064832\) \([2]\) \(663552\) \(1.7737\)  

Rank

sage: E.rank()
 

The elliptic curves in class 119952.fs have rank \(0\).

Complex multiplication

The elliptic curves in class 119952.fs do not have complex multiplication.

Modular form 119952.2.a.fs

sage: E.q_eigenform(10)
 
\(q + 2q^{5} + 2q^{13} - q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.