Label 119952.dq
Number of curves $1$
Conductor $119952$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("dq1")
sage: E.isogeny_class()

Elliptic curves in class 119952.dq

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119952.dq1 119952u1 \([0, 0, 0, 420, 2716]\) \(896000/867\) \(-7928347392\) \([]\) \(64512\) \(0.58654\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 119952.dq1 has rank \(1\).

Complex multiplication

The elliptic curves in class 119952.dq do not have complex multiplication.

Modular form 119952.2.a.dq

sage: E.q_eigenform(10)
\(q + 4q^{11} - 5q^{13} - q^{17} + 7q^{19} + O(q^{20})\)  Toggle raw display