Label 119952.cq
Number of curves $1$
Conductor $119952$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("cq1")
sage: E.isogeny_class()

Elliptic curves in class 119952.cq

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119952.cq1 119952v1 \([0, 0, 0, -41948508, -104573822164]\) \(-371806976516936704/89266779\) \(-1959952734462530304\) \([]\) \(4128768\) \(2.8879\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 119952.cq1 has rank \(1\).

Complex multiplication

The elliptic curves in class 119952.cq do not have complex multiplication.

Modular form 119952.2.a.cq

sage: E.q_eigenform(10)
\(q - q^{5} - q^{11} + q^{13} - q^{17} + 5q^{19} + O(q^{20})\)  Toggle raw display