| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 119850.a1 |
119850m2 |
119850.a |
119850m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{9} \cdot 3^{20} \cdot 5^{10} \cdot 17^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$11.90680857$ |
$1$ |
|
$0$ |
$14376960$ |
$3.178120$ |
$30535772169146961137329/15155517606010560000$ |
$0.99080$ |
$5.25311$ |
$[1, 1, 0, -16279275, 9532000125]$ |
\(y^2+xy=x^3+x^2-16279275x+9532000125\) |
2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? |
$[(15021995/13, 58065726720/13)]$ |
| 119850.a2 |
119850m1 |
119850.a |
119850m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{18} \cdot 3^{10} \cdot 5^{8} \cdot 17 \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$5.953404287$ |
$1$ |
|
$3$ |
$7188480$ |
$2.831543$ |
$16544044236927440400049/14532392366899200$ |
$0.97046$ |
$5.20070$ |
$[1, 1, 0, -13271275, 18589088125]$ |
\(y^2+xy=x^3+x^2-13271275x+18589088125\) |
2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? |
$[(-3779, 123511)]$ |
| 119850.b1 |
119850s2 |
119850.b |
119850s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2 \cdot 3^{6} \cdot 5^{3} \cdot 17 \cdot 47 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$5.322776760$ |
$1$ |
|
$8$ |
$208896$ |
$1.108471$ |
$68448545988893981/1164942$ |
$0.93221$ |
$3.72783$ |
$[1, 1, 0, -42610, 3367750]$ |
\(y^2+xy=x^3+x^2-42610x+3367750\) |
2.3.0.a.1, 60.6.0.c.1, 19176.6.0.?, 31960.6.0.?, 95880.12.0.? |
$[(85, 565), (-185, 2320)]$ |
| 119850.b2 |
119850s1 |
119850.b |
119850s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{3} \cdot 17^{2} \cdot 47^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$1.330694190$ |
$1$ |
|
$15$ |
$104448$ |
$0.761897$ |
$-16661484415421/68947308$ |
$0.87874$ |
$3.01690$ |
$[1, 1, 0, -2660, 51900]$ |
\(y^2+xy=x^3+x^2-2660x+51900\) |
2.3.0.a.1, 30.6.0.a.1, 19176.6.0.?, 31960.6.0.?, 95880.12.0.? |
$[(34, 30), (30, 0)]$ |
| 119850.c1 |
119850r1 |
119850.c |
119850r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{2} \cdot 3^{5} \cdot 5^{9} \cdot 17^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$3.984289339$ |
$1$ |
|
$3$ |
$396800$ |
$1.390837$ |
$1286848396133/13202676$ |
$0.85776$ |
$3.62307$ |
$[1, 1, 0, -28325, -1830375]$ |
\(y^2+xy=x^3+x^2-28325x-1830375\) |
2.3.0.a.1, 680.6.0.?, 1410.6.0.?, 19176.6.0.?, 95880.12.0.? |
$[(216, 1371)]$ |
| 119850.c2 |
119850r2 |
119850.c |
119850r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2 \cdot 3^{10} \cdot 5^{9} \cdot 17 \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$7.968578679$ |
$1$ |
|
$0$ |
$793600$ |
$1.737410$ |
$-20057135813/4434934194$ |
$0.92655$ |
$3.77587$ |
$[1, 1, 0, -7075, -4486625]$ |
\(y^2+xy=x^3+x^2-7075x-4486625\) |
2.3.0.a.1, 680.6.0.?, 2820.6.0.?, 19176.6.0.?, 95880.12.0.? |
$[(1819/3, 39017/3)]$ |
| 119850.d1 |
119850n1 |
119850.d |
119850n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1.589057936$ |
$1$ |
|
$2$ |
$37440$ |
$0.097930$ |
$930847055/901272$ |
$0.79693$ |
$2.04126$ |
$[1, 1, 0, 60, -120]$ |
\(y^2+xy=x^3+x^2+60x-120\) |
408.2.0.? |
$[(29, 150)]$ |
| 119850.e1 |
119850p1 |
119850.e |
119850p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{19} \cdot 3^{7} \cdot 5^{8} \cdot 17^{2} \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1128$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3192000$ |
$2.322548$ |
$83946059729774905/15574510338048$ |
$0.93163$ |
$4.43342$ |
$[1, 1, 0, -666825, 172477125]$ |
\(y^2+xy=x^3+x^2-666825x+172477125\) |
1128.2.0.? |
$[ ]$ |
| 119850.f1 |
119850k2 |
119850.f |
119850k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{6} \cdot 17^{4} \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$376$ |
$12$ |
$0$ |
$0.600217385$ |
$1$ |
|
$8$ |
$884736$ |
$1.702593$ |
$3532990607772625/119554632072$ |
$0.93526$ |
$3.88726$ |
$[1, 1, 0, -79325, 8311125]$ |
\(y^2+xy=x^3+x^2-79325x+8311125\) |
2.3.0.a.1, 8.6.0.b.1, 188.6.0.?, 376.12.0.? |
$[(245, 1790)]$ |
| 119850.f2 |
119850k1 |
119850.f |
119850k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{6} \cdot 3^{8} \cdot 5^{6} \cdot 17^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$376$ |
$12$ |
$0$ |
$1.200434771$ |
$1$ |
|
$7$ |
$442368$ |
$1.356018$ |
$33230963375/5703556032$ |
$1.01206$ |
$3.38399$ |
$[1, 1, 0, 1675, 454125]$ |
\(y^2+xy=x^3+x^2+1675x+454125\) |
2.3.0.a.1, 8.6.0.c.1, 94.6.0.?, 376.12.0.? |
$[(11, 683)]$ |
| 119850.g1 |
119850a1 |
119850.g |
119850a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{11} \cdot 3^{8} \cdot 5^{2} \cdot 17^{5} \cdot 47^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6392$ |
$2$ |
$0$ |
$9.758125615$ |
$1$ |
|
$0$ |
$5829120$ |
$2.495651$ |
$10069714549548323312305/1980788795665348608$ |
$1.02115$ |
$4.60772$ |
$[1, 1, 0, -1315460, 471260880]$ |
\(y^2+xy=x^3+x^2-1315460x+471260880\) |
6392.2.0.? |
$[(-11531/3, 218522/3)]$ |
| 119850.h1 |
119850f2 |
119850.h |
119850f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{5} \cdot 3 \cdot 5^{6} \cdot 17 \cdot 47^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$19176$ |
$12$ |
$0$ |
$9.250415055$ |
$1$ |
|
$6$ |
$1536000$ |
$2.036129$ |
$30949975477232209/17591679416928$ |
$1.04046$ |
$4.07284$ |
$[1, 1, 0, -163525, -3465875]$ |
\(y^2+xy=x^3+x^2-163525x-3465875\) |
2.3.0.a.1, 188.6.0.?, 408.6.0.?, 19176.12.0.? |
$[(531, 7466), (629, 11645)]$ |
| 119850.h2 |
119850f1 |
119850.h |
119850f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{10} \cdot 3^{2} \cdot 5^{6} \cdot 17^{2} \cdot 47^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$19176$ |
$12$ |
$0$ |
$2.312603763$ |
$1$ |
|
$17$ |
$768000$ |
$1.689556$ |
$469296691776431/276524669952$ |
$1.02381$ |
$3.71463$ |
$[1, 1, 0, 40475, -405875]$ |
\(y^2+xy=x^3+x^2+40475x-405875\) |
2.3.0.a.1, 94.6.0.?, 408.6.0.?, 19176.12.0.? |
$[(435, 9770), (85, 1870)]$ |
| 119850.i1 |
119850e6 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{3} \cdot 3 \cdot 5^{7} \cdot 17^{8} \cdot 47^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$191760$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9437184$ |
$2.923450$ |
$313655821417545611832001/1849133782460280$ |
$1.01650$ |
$5.45230$ |
$[1, 1, 0, -35387500, -81040061000]$ |
\(y^2+xy=x^3+x^2-35387500x-81040061000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.1, 24.24.0-8.n.1.6, $\ldots$ |
$[ ]$ |
| 119850.i2 |
119850e4 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{14} \cdot 17 \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$191760$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4718592$ |
$2.576878$ |
$2269493633308673229121/131055975000000$ |
$0.96301$ |
$5.03083$ |
$[1, 1, 0, -6844500, 6889050000]$ |
\(y^2+xy=x^3+x^2-6844500x+6889050000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.2, 40.24.0-8.n.1.1, $\ldots$ |
$[ ]$ |
| 119850.i3 |
119850e3 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{8} \cdot 17^{4} \cdot 47^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$95880$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$4718592$ |
$2.576878$ |
$80890661380690094401/5868804049934400$ |
$0.95069$ |
$4.74571$ |
$[1, 1, 0, -2252500, -1217846000]$ |
\(y^2+xy=x^3+x^2-2252500x-1217846000\) |
2.6.0.a.1, 4.12.0.b.1, 20.24.0-4.b.1.1, 24.24.0-4.b.1.6, 120.48.0.?, $\ldots$ |
$[ ]$ |
| 119850.i4 |
119850e2 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{10} \cdot 17^{2} \cdot 47^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$95880$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$2359296$ |
$2.230305$ |
$655784181114926401/132378831360000$ |
$0.93117$ |
$4.33395$ |
$[1, 1, 0, -452500, 94354000]$ |
\(y^2+xy=x^3+x^2-452500x+94354000\) |
2.6.0.a.1, 4.12.0.b.1, 20.24.0-4.b.1.3, 24.24.0-4.b.1.4, 120.48.0.?, $\ldots$ |
$[ ]$ |
| 119850.i5 |
119850e1 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{24} \cdot 3^{2} \cdot 5^{8} \cdot 17 \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$191760$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1179648$ |
$1.883730$ |
$1490881681033919/3016124006400$ |
$0.91257$ |
$3.89169$ |
$[1, 1, 0, 59500, 8850000]$ |
\(y^2+xy=x^3+x^2+59500x+8850000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.2, 40.24.0-8.n.1.1, $\ldots$ |
$[ ]$ |
| 119850.i6 |
119850e5 |
119850.i |
119850e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{3} \cdot 3 \cdot 5^{7} \cdot 17^{2} \cdot 47^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$191760$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$9437184$ |
$2.923450$ |
$63923182754308315199/825775421429871480$ |
$0.98170$ |
$4.98723$ |
$[1, 1, 0, 2082500, -5340431000]$ |
\(y^2+xy=x^3+x^2+2082500x-5340431000\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.1, 24.24.0-8.n.1.2, $\ldots$ |
$[ ]$ |
| 119850.j1 |
119850c2 |
119850.j |
119850c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{6} \cdot 3 \cdot 5^{6} \cdot 17 \cdot 47^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9588$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$786432$ |
$1.682976$ |
$583306826994199153/7210176$ |
$0.96107$ |
$4.32394$ |
$[1, 1, 0, -435175, -110676875]$ |
\(y^2+xy=x^3+x^2-435175x-110676875\) |
2.3.0.a.1, 188.6.0.?, 204.6.0.?, 9588.12.0.? |
$[ ]$ |
| 119850.j2 |
119850c1 |
119850.j |
119850c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{12} \cdot 3^{2} \cdot 5^{6} \cdot 17^{2} \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9588$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$393216$ |
$1.336403$ |
$-142048716869233/500723712$ |
$0.91466$ |
$3.61296$ |
$[1, 1, 0, -27175, -1740875]$ |
\(y^2+xy=x^3+x^2-27175x-1740875\) |
2.3.0.a.1, 94.6.0.?, 204.6.0.?, 9588.12.0.? |
$[ ]$ |
| 119850.k1 |
119850b4 |
119850.k |
119850b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{10} \cdot 17 \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$42467328$ |
$3.744942$ |
$2631913140833100999516620160001/53932500$ |
$1.05316$ |
$6.81562$ |
$[1, 1, 0, -7191000000, 234707248741500]$ |
\(y^2+xy=x^3+x^2-7191000000x+234707248741500\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 376.12.0.?, 408.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.k2 |
119850b3 |
119850.k |
119850b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{22} \cdot 17 \cdot 47^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42467328$ |
$3.744942$ |
$643541766488031715723854721/1367049303588867187500$ |
$1.00334$ |
$6.10447$ |
$[1, 1, 0, -449667000, 3663227362500]$ |
\(y^2+xy=x^3+x^2-449667000x+3663227362500\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 204.12.0.?, 376.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.k3 |
119850b2 |
119850.k |
119850b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{14} \cdot 17^{2} \cdot 47^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$47940$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$21233664$ |
$3.398369$ |
$642556921242980781788760001/2908714556250000$ |
$1.03607$ |
$6.10434$ |
$[1, 1, 0, -449437500, 3667160304000]$ |
\(y^2+xy=x^3+x^2-449437500x+3667160304000\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 188.12.0.?, 204.12.0.?, 940.24.0.?, $\ldots$ |
$[ ]$ |
| 119850.k4 |
119850b1 |
119850.k |
119850b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5^{10} \cdot 17^{4} \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10616832$ |
$3.051796$ |
$-156634061220235043455681/333786357882720000$ |
$0.97836$ |
$5.39324$ |
$[1, 1, 0, -28075500, 57352050000]$ |
\(y^2+xy=x^3+x^2-28075500x+57352050000\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 94.6.0.?, 188.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.l1 |
119850q1 |
119850.l |
119850q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2 \cdot 3^{4} \cdot 5^{4} \cdot 17 \cdot 47^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6392$ |
$2$ |
$0$ |
$0.717682136$ |
$1$ |
|
$4$ |
$186624$ |
$1.038792$ |
$120605974156825/285928542$ |
$0.89992$ |
$3.32318$ |
$[1, 1, 0, -8800, 313450]$ |
\(y^2+xy=x^3+x^2-8800x+313450\) |
6392.2.0.? |
$[(51, -2)]$ |
| 119850.m1 |
119850d4 |
119850.m |
119850d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{7} \cdot 3 \cdot 5^{22} \cdot 17 \cdot 47^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$239468544$ |
$4.629814$ |
$5223288184873476316489614168190369/103417441406250000000$ |
$1.03818$ |
$7.46495$ |
$[1, 1, 0, -90367742650, 10456027108052500]$ |
\(y^2+xy=x^3+x^2-90367742650x+10456027108052500\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 376.12.0.?, 408.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.m2 |
119850d3 |
119850.m |
119850d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{7} \cdot 3 \cdot 5^{10} \cdot 17 \cdot 47^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$239468544$ |
$4.629814$ |
$1652949902123084794936422096289/474061251084510199223280000$ |
$1.02738$ |
$6.77585$ |
$[1, 1, 0, -6158174650, 132102642164500]$ |
\(y^2+xy=x^3+x^2-6158174650x+132102642164500\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 376.12.0.?, 408.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.m3 |
119850d2 |
119850.m |
119850d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{14} \cdot 3^{2} \cdot 5^{14} \cdot 17^{2} \cdot 47^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$95880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$119734272$ |
$4.283241$ |
$1275346040248469980391660496289/179435130052665600000000$ |
$1.02165$ |
$6.75367$ |
$[1, 1, 0, -5648174650, 163362072164500]$ |
\(y^2+xy=x^3+x^2-5648174650x+163362072164500\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 188.12.0.?, 408.12.0.?, 940.24.0.?, $\ldots$ |
$[ ]$ |
| 119850.m4 |
119850d1 |
119850.m |
119850d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{28} \cdot 3^{4} \cdot 5^{10} \cdot 17^{4} \cdot 47^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$95880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$59867136$ |
$3.936665$ |
$-234824781624528595037627809/117840390806757703680000$ |
$1.00570$ |
$6.07166$ |
$[1, 1, 0, -321326650, 3029274212500]$ |
\(y^2+xy=x^3+x^2-321326650x+3029274212500\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 94.6.0.?, 188.12.0.?, $\ldots$ |
$[ ]$ |
| 119850.n1 |
119850j2 |
119850.n |
119850j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{10} \cdot 17^{2} \cdot 47 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$1.516914$ |
$1002431968831441/5501115000$ |
$0.88877$ |
$3.77953$ |
$[1, 1, 0, -52125, 4537125]$ |
\(y^2+xy=x^3+x^2-52125x+4537125\) |
2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? |
$[ ]$ |
| 119850.n2 |
119850j1 |
119850.n |
119850j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{8} \cdot 17 \cdot 47^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$258048$ |
$1.170340$ |
$953054410321/540763200$ |
$0.88684$ |
$3.18450$ |
$[1, 1, 0, -5125, -21875]$ |
\(y^2+xy=x^3+x^2-5125x-21875\) |
2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? |
$[ ]$ |
| 119850.o1 |
119850l2 |
119850.o |
119850l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 17 \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$3.283845247$ |
$1$ |
|
$2$ |
$313344$ |
$1.207403$ |
$44818317725761/67595400$ |
$0.86647$ |
$3.51379$ |
$[1, 1, 0, -18500, -975000]$ |
\(y^2+xy=x^3+x^2-18500x-975000\) |
2.3.0.a.1, 136.6.0.?, 2820.6.0.?, 95880.12.0.? |
$[(1505, 57410)]$ |
| 119850.o2 |
119850l1 |
119850.o |
119850l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{6} \cdot 3 \cdot 5^{7} \cdot 17^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$95880$ |
$12$ |
$0$ |
$1.641922623$ |
$1$ |
|
$3$ |
$156672$ |
$0.860829$ |
$23912763841/13039680$ |
$0.83637$ |
$2.86936$ |
$[1, 1, 0, -1500, -6000]$ |
\(y^2+xy=x^3+x^2-1500x-6000\) |
2.3.0.a.1, 136.6.0.?, 1410.6.0.?, 95880.12.0.? |
$[(-5, 40)]$ |
| 119850.p1 |
119850g1 |
119850.p |
119850g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 17 \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$9588$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1555200$ |
$2.009037$ |
$2047903540175/22620930048$ |
$0.91827$ |
$4.04801$ |
$[1, 1, 0, 56550, 22036500]$ |
\(y^2+xy=x^3+x^2+56550x+22036500\) |
9588.2.0.? |
$[ ]$ |
| 119850.q1 |
119850h1 |
119850.q |
119850h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{12} \cdot 3^{17} \cdot 5^{2} \cdot 17^{7} \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$9588$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$20014848$ |
$3.184944$ |
$-8367237728504694077220625/10201442494348959141888$ |
$1.03893$ |
$5.27953$ |
$[1, 1, 0, -12367050, 29500411860]$ |
\(y^2+xy=x^3+x^2-12367050x+29500411860\) |
9588.2.0.? |
$[ ]$ |
| 119850.r1 |
119850o2 |
119850.r |
119850o |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{5} \cdot 3^{2} \cdot 5^{10} \cdot 17^{3} \cdot 47^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$95880$ |
$16$ |
$0$ |
$2.997576496$ |
$1$ |
|
$2$ |
$5443200$ |
$2.556770$ |
$3041032243934241025/146903730912$ |
$0.95687$ |
$5.01566$ |
$[1, 1, 0, -6451575, -6309772875]$ |
\(y^2+xy=x^3+x^2-6451575x-6309772875\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 6392.2.0.?, 19176.8.0.?, 95880.16.0.? |
$[(-1469, 241)]$ |
| 119850.r2 |
119850o1 |
119850.r |
119850o |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{10} \cdot 17 \cdot 47 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$95880$ |
$16$ |
$0$ |
$8.992729490$ |
$1$ |
|
$0$ |
$1814400$ |
$2.007465$ |
$39437636193025/19086409728$ |
$0.91551$ |
$4.05337$ |
$[1, 1, 0, -151575, 9127125]$ |
\(y^2+xy=x^3+x^2-151575x+9127125\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 6392.2.0.?, 19176.8.0.?, 95880.16.0.? |
$[(-3011/4, 362539/4)]$ |
| 119850.s1 |
119850i1 |
119850.s |
119850i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2 \cdot 3^{3} \cdot 5^{2} \cdot 17^{2} \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1128$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72000$ |
$0.139277$ |
$9836106385/733482$ |
$0.80302$ |
$2.24288$ |
$[1, 1, 0, -130, -590]$ |
\(y^2+xy=x^3+x^2-130x-590\) |
1128.2.0.? |
$[ ]$ |
| 119850.t1 |
119850bh1 |
119850.t |
119850bh |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{3} \cdot 3^{14} \cdot 5^{2} \cdot 17 \cdot 47^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6392$ |
$2$ |
$0$ |
$0.627239378$ |
$1$ |
|
$10$ |
$2540160$ |
$2.254200$ |
$271329513086584312465/149185207994866488$ |
$0.99561$ |
$4.29868$ |
$[1, 0, 1, -394371, 21259558]$ |
\(y^2+xy+y=x^3-394371x+21259558\) |
6392.2.0.? |
$[(-484, 10182), (-1513/2, 87801/2)]$ |
| 119850.u1 |
119850ba2 |
119850.u |
119850ba |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{5} \cdot 3^{8} \cdot 5^{6} \cdot 17^{6} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$0.464950974$ |
$1$ |
|
$10$ |
$2457600$ |
$2.256386$ |
$480006385101608833/238183351674336$ |
$1.04758$ |
$4.30727$ |
$[1, 0, 1, -407801, 37810748]$ |
\(y^2+xy+y=x^3-407801x+37810748\) |
2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? |
$[(12, 5731)]$ |
| 119850.u2 |
119850ba1 |
119850.u |
119850ba |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 17^{3} \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6392$ |
$12$ |
$0$ |
$0.929901949$ |
$1$ |
|
$7$ |
$1228800$ |
$1.909813$ |
$75160530649878913/900176053248$ |
$0.95132$ |
$4.14871$ |
$[1, 0, 1, -219801, -39269252]$ |
\(y^2+xy+y=x^3-219801x-39269252\) |
2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? |
$[(-268, 771)]$ |
| 119850.v1 |
119850y2 |
119850.v |
119850y |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 17 \cdot 47^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$4.846468558$ |
$1$ |
|
$0$ |
$921600$ |
$1.757191$ |
$1195369625984689/597272954400$ |
$0.91313$ |
$3.79458$ |
$[1, 0, 1, -55276, -1853302]$ |
\(y^2+xy+y=x^3-55276x-1853302\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(-677/2, 13723/2)]$ |
| 119850.v2 |
119850y1 |
119850.v |
119850y |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{10} \cdot 3 \cdot 5^{7} \cdot 17^{2} \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$2.423234279$ |
$1$ |
|
$1$ |
$460800$ |
$1.410618$ |
$14582222854991/9805839360$ |
$0.88463$ |
$3.41778$ |
$[1, 0, 1, 12724, -221302]$ |
\(y^2+xy+y=x^3+12724x-221302\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(1037/4, 57819/4)]$ |
| 119850.w1 |
119850z2 |
119850.w |
119850z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{7} \cdot 3^{2} \cdot 5^{8} \cdot 17^{4} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5640$ |
$12$ |
$0$ |
$4.922688692$ |
$1$ |
|
$2$ |
$1376256$ |
$2.022068$ |
$3622187303967916081/113054025600$ |
$0.93517$ |
$4.48010$ |
$[1, 0, 1, -799876, -275407102]$ |
\(y^2+xy+y=x^3-799876x-275407102\) |
2.3.0.a.1, 60.6.0.c.1, 376.6.0.?, 5640.12.0.? |
$[(12342, 1361266)]$ |
| 119850.w2 |
119850z1 |
119850.w |
119850z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{14} \cdot 3 \cdot 5^{7} \cdot 17^{2} \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5640$ |
$12$ |
$0$ |
$9.845377384$ |
$1$ |
|
$1$ |
$688128$ |
$1.675493$ |
$-776683754022961/156893429760$ |
$0.89124$ |
$3.78332$ |
$[1, 0, 1, -47876, -4687102]$ |
\(y^2+xy+y=x^3-47876x-4687102\) |
2.3.0.a.1, 30.6.0.a.1, 376.6.0.?, 5640.12.0.? |
$[(373322/11, 225462801/11)]$ |
| 119850.x1 |
119850bo2 |
119850.x |
119850bo |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{12} \cdot 3 \cdot 5^{8} \cdot 17 \cdot 47^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$9588$ |
$16$ |
$0$ |
$41.43030833$ |
$1$ |
|
$2$ |
$933120$ |
$1.845352$ |
$-985940904825625/21688209408$ |
$0.94103$ |
$4.05656$ |
$[1, 0, 1, -151576, -23154202]$ |
\(y^2+xy+y=x^3-151576x-23154202\) |
3.8.0-3.a.1.1, 9588.16.0.? |
$[(1353, 46747), (1947/2, 32411/2)]$ |
| 119850.x2 |
119850bo1 |
119850.x |
119850bo |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 17^{3} \cdot 47 \) |
$2$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$9588$ |
$16$ |
$0$ |
$4.603367593$ |
$1$ |
|
$16$ |
$311040$ |
$1.296045$ |
$134326124375/99753552$ |
$0.90273$ |
$3.29221$ |
$[1, 0, 1, 7799, -140452]$ |
\(y^2+xy+y=x^3+7799x-140452\) |
3.8.0-3.a.1.2, 9588.16.0.? |
$[(27, 286), (18, 67)]$ |
| 119850.y1 |
119850t1 |
119850.y |
119850t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( - 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 17 \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$9588$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1152000$ |
$1.821766$ |
$-2337936293466990960385/12724273152$ |
$0.97334$ |
$4.48285$ |
$[1, 0, 1, -808506, -279883412]$ |
\(y^2+xy+y=x^3-808506x-279883412\) |
9588.2.0.? |
$[ ]$ |
| 119850.z1 |
119850x6 |
119850.z |
119850x |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{6} \cdot 17 \cdot 47^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.90 |
2B |
$63920$ |
$192$ |
$1$ |
$2.365456505$ |
$1$ |
|
$2$ |
$29360128$ |
$3.530979$ |
$98441686359563523681894337/42493431686285386512$ |
$1.02572$ |
$5.94392$ |
$[1, 0, 1, -240487101, -1434927060152]$ |
\(y^2+xy+y=x^3-240487101x-1434927060152\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 20.12.0-4.c.1.1, 34.6.0.a.1, $\ldots$ |
$[(17966, 199767)]$ |