Learn more

Refine search


Results (1-50 of 134 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
119850.a1 119850.a \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $11.90680857$ $[1, 1, 0, -16279275, 9532000125]$ \(y^2+xy=x^3+x^2-16279275x+9532000125\) 2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? $[(15021995/13, 58065726720/13)]$
119850.a2 119850.a \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $5.953404287$ $[1, 1, 0, -13271275, 18589088125]$ \(y^2+xy=x^3+x^2-13271275x+18589088125\) 2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? $[(-3779, 123511)]$
119850.b1 119850.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\Z/2\Z$ $5.322776760$ $[1, 1, 0, -42610, 3367750]$ \(y^2+xy=x^3+x^2-42610x+3367750\) 2.3.0.a.1, 60.6.0.c.1, 19176.6.0.?, 31960.6.0.?, 95880.12.0.? $[(85, 565), (-185, 2320)]$
119850.b2 119850.b \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\Z/2\Z$ $1.330694190$ $[1, 1, 0, -2660, 51900]$ \(y^2+xy=x^3+x^2-2660x+51900\) 2.3.0.a.1, 30.6.0.a.1, 19176.6.0.?, 31960.6.0.?, 95880.12.0.? $[(34, 30), (30, 0)]$
119850.c1 119850.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $3.984289339$ $[1, 1, 0, -28325, -1830375]$ \(y^2+xy=x^3+x^2-28325x-1830375\) 2.3.0.a.1, 680.6.0.?, 1410.6.0.?, 19176.6.0.?, 95880.12.0.? $[(216, 1371)]$
119850.c2 119850.c \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $7.968578679$ $[1, 1, 0, -7075, -4486625]$ \(y^2+xy=x^3+x^2-7075x-4486625\) 2.3.0.a.1, 680.6.0.?, 2820.6.0.?, 19176.6.0.?, 95880.12.0.? $[(1819/3, 39017/3)]$
119850.d1 119850.d \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\mathsf{trivial}$ $1.589057936$ $[1, 1, 0, 60, -120]$ \(y^2+xy=x^3+x^2+60x-120\) 408.2.0.? $[(29, 150)]$
119850.e1 119850.e \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -666825, 172477125]$ \(y^2+xy=x^3+x^2-666825x+172477125\) 1128.2.0.? $[ ]$
119850.f1 119850.f \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $0.600217385$ $[1, 1, 0, -79325, 8311125]$ \(y^2+xy=x^3+x^2-79325x+8311125\) 2.3.0.a.1, 8.6.0.b.1, 188.6.0.?, 376.12.0.? $[(245, 1790)]$
119850.f2 119850.f \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $1.200434771$ $[1, 1, 0, 1675, 454125]$ \(y^2+xy=x^3+x^2+1675x+454125\) 2.3.0.a.1, 8.6.0.c.1, 94.6.0.?, 376.12.0.? $[(11, 683)]$
119850.g1 119850.g \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\mathsf{trivial}$ $9.758125615$ $[1, 1, 0, -1315460, 471260880]$ \(y^2+xy=x^3+x^2-1315460x+471260880\) 6392.2.0.? $[(-11531/3, 218522/3)]$
119850.h1 119850.h \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\Z/2\Z$ $9.250415055$ $[1, 1, 0, -163525, -3465875]$ \(y^2+xy=x^3+x^2-163525x-3465875\) 2.3.0.a.1, 188.6.0.?, 408.6.0.?, 19176.12.0.? $[(531, 7466), (629, 11645)]$
119850.h2 119850.h \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\Z/2\Z$ $2.312603763$ $[1, 1, 0, 40475, -405875]$ \(y^2+xy=x^3+x^2+40475x-405875\) 2.3.0.a.1, 94.6.0.?, 408.6.0.?, 19176.12.0.? $[(435, 9770), (85, 1870)]$
119850.i1 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -35387500, -81040061000]$ \(y^2+xy=x^3+x^2-35387500x-81040061000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.1, 24.24.0-8.n.1.6, $\ldots$ $[ ]$
119850.i2 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6844500, 6889050000]$ \(y^2+xy=x^3+x^2-6844500x+6889050000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.2, 40.24.0-8.n.1.1, $\ldots$ $[ ]$
119850.i3 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -2252500, -1217846000]$ \(y^2+xy=x^3+x^2-2252500x-1217846000\) 2.6.0.a.1, 4.12.0.b.1, 20.24.0-4.b.1.1, 24.24.0-4.b.1.6, 120.48.0.?, $\ldots$ $[ ]$
119850.i4 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -452500, 94354000]$ \(y^2+xy=x^3+x^2-452500x+94354000\) 2.6.0.a.1, 4.12.0.b.1, 20.24.0-4.b.1.3, 24.24.0-4.b.1.4, 120.48.0.?, $\ldots$ $[ ]$
119850.i5 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 59500, 8850000]$ \(y^2+xy=x^3+x^2+59500x+8850000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.2, 40.24.0-8.n.1.1, $\ldots$ $[ ]$
119850.i6 119850.i \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 2082500, -5340431000]$ \(y^2+xy=x^3+x^2+2082500x-5340431000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 20.12.0-4.c.1.1, 24.24.0-8.n.1.2, $\ldots$ $[ ]$
119850.j1 119850.j \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -435175, -110676875]$ \(y^2+xy=x^3+x^2-435175x-110676875\) 2.3.0.a.1, 188.6.0.?, 204.6.0.?, 9588.12.0.? $[ ]$
119850.j2 119850.j \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -27175, -1740875]$ \(y^2+xy=x^3+x^2-27175x-1740875\) 2.3.0.a.1, 94.6.0.?, 204.6.0.?, 9588.12.0.? $[ ]$
119850.k1 119850.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -7191000000, 234707248741500]$ \(y^2+xy=x^3+x^2-7191000000x+234707248741500\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 376.12.0.?, 408.12.0.?, $\ldots$ $[ ]$
119850.k2 119850.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -449667000, 3663227362500]$ \(y^2+xy=x^3+x^2-449667000x+3663227362500\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 204.12.0.?, 376.12.0.?, $\ldots$ $[ ]$
119850.k3 119850.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -449437500, 3667160304000]$ \(y^2+xy=x^3+x^2-449437500x+3667160304000\) 2.6.0.a.1, 20.12.0-2.a.1.1, 188.12.0.?, 204.12.0.?, 940.24.0.?, $\ldots$ $[ ]$
119850.k4 119850.k \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -28075500, 57352050000]$ \(y^2+xy=x^3+x^2-28075500x+57352050000\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 94.6.0.?, 188.12.0.?, $\ldots$ $[ ]$
119850.l1 119850.l \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\mathsf{trivial}$ $0.717682136$ $[1, 1, 0, -8800, 313450]$ \(y^2+xy=x^3+x^2-8800x+313450\) 6392.2.0.? $[(51, -2)]$
119850.m1 119850.m \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -90367742650, 10456027108052500]$ \(y^2+xy=x^3+x^2-90367742650x+10456027108052500\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 376.12.0.?, 408.12.0.?, $\ldots$ $[ ]$
119850.m2 119850.m \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6158174650, 132102642164500]$ \(y^2+xy=x^3+x^2-6158174650x+132102642164500\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 376.12.0.?, 408.12.0.?, $\ldots$ $[ ]$
119850.m3 119850.m \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -5648174650, 163362072164500]$ \(y^2+xy=x^3+x^2-5648174650x+163362072164500\) 2.6.0.a.1, 20.12.0-2.a.1.1, 188.12.0.?, 408.12.0.?, 940.24.0.?, $\ldots$ $[ ]$
119850.m4 119850.m \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -321326650, 3029274212500]$ \(y^2+xy=x^3+x^2-321326650x+3029274212500\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 94.6.0.?, 188.12.0.?, $\ldots$ $[ ]$
119850.n1 119850.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -52125, 4537125]$ \(y^2+xy=x^3+x^2-52125x+4537125\) 2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? $[ ]$
119850.n2 119850.n \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -5125, -21875]$ \(y^2+xy=x^3+x^2-5125x-21875\) 2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? $[ ]$
119850.o1 119850.o \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $3.283845247$ $[1, 1, 0, -18500, -975000]$ \(y^2+xy=x^3+x^2-18500x-975000\) 2.3.0.a.1, 136.6.0.?, 2820.6.0.?, 95880.12.0.? $[(1505, 57410)]$
119850.o2 119850.o \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $1.641922623$ $[1, 1, 0, -1500, -6000]$ \(y^2+xy=x^3+x^2-1500x-6000\) 2.3.0.a.1, 136.6.0.?, 1410.6.0.?, 95880.12.0.? $[(-5, 40)]$
119850.p1 119850.p \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 56550, 22036500]$ \(y^2+xy=x^3+x^2+56550x+22036500\) 9588.2.0.? $[ ]$
119850.q1 119850.q \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -12367050, 29500411860]$ \(y^2+xy=x^3+x^2-12367050x+29500411860\) 9588.2.0.? $[ ]$
119850.r1 119850.r \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\mathsf{trivial}$ $2.997576496$ $[1, 1, 0, -6451575, -6309772875]$ \(y^2+xy=x^3+x^2-6451575x-6309772875\) 3.4.0.a.1, 15.8.0-3.a.1.1, 6392.2.0.?, 19176.8.0.?, 95880.16.0.? $[(-1469, 241)]$
119850.r2 119850.r \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\mathsf{trivial}$ $8.992729490$ $[1, 1, 0, -151575, 9127125]$ \(y^2+xy=x^3+x^2-151575x+9127125\) 3.4.0.a.1, 15.8.0-3.a.1.2, 6392.2.0.?, 19176.8.0.?, 95880.16.0.? $[(-3011/4, 362539/4)]$
119850.s1 119850.s \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -130, -590]$ \(y^2+xy=x^3+x^2-130x-590\) 1128.2.0.? $[ ]$
119850.t1 119850.t \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\mathsf{trivial}$ $0.627239378$ $[1, 0, 1, -394371, 21259558]$ \(y^2+xy+y=x^3-394371x+21259558\) 6392.2.0.? $[(-484, 10182), (-1513/2, 87801/2)]$
119850.u1 119850.u \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $0.464950974$ $[1, 0, 1, -407801, 37810748]$ \(y^2+xy+y=x^3-407801x+37810748\) 2.3.0.a.1, 68.6.0.c.1, 376.6.0.?, 6392.12.0.? $[(12, 5731)]$
119850.u2 119850.u \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $0.929901949$ $[1, 0, 1, -219801, -39269252]$ \(y^2+xy+y=x^3-219801x-39269252\) 2.3.0.a.1, 34.6.0.a.1, 376.6.0.?, 6392.12.0.? $[(-268, 771)]$
119850.v1 119850.v \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $4.846468558$ $[1, 0, 1, -55276, -1853302]$ \(y^2+xy+y=x^3-55276x-1853302\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? $[(-677/2, 13723/2)]$
119850.v2 119850.v \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $2.423234279$ $[1, 0, 1, 12724, -221302]$ \(y^2+xy+y=x^3+12724x-221302\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? $[(1037/4, 57819/4)]$
119850.w1 119850.w \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $4.922688692$ $[1, 0, 1, -799876, -275407102]$ \(y^2+xy+y=x^3-799876x-275407102\) 2.3.0.a.1, 60.6.0.c.1, 376.6.0.?, 5640.12.0.? $[(12342, 1361266)]$
119850.w2 119850.w \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $9.845377384$ $[1, 0, 1, -47876, -4687102]$ \(y^2+xy+y=x^3-47876x-4687102\) 2.3.0.a.1, 30.6.0.a.1, 376.6.0.?, 5640.12.0.? $[(373322/11, 225462801/11)]$
119850.x1 119850.x \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\mathsf{trivial}$ $41.43030833$ $[1, 0, 1, -151576, -23154202]$ \(y^2+xy+y=x^3-151576x-23154202\) 3.8.0-3.a.1.1, 9588.16.0.? $[(1353, 46747), (1947/2, 32411/2)]$
119850.x2 119850.x \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $2$ $\Z/3\Z$ $4.603367593$ $[1, 0, 1, 7799, -140452]$ \(y^2+xy+y=x^3+7799x-140452\) 3.8.0-3.a.1.2, 9588.16.0.? $[(27, 286), (18, 67)]$
119850.y1 119850.y \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -808506, -279883412]$ \(y^2+xy+y=x^3-808506x-279883412\) 9588.2.0.? $[ ]$
119850.z1 119850.z \( 2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47 \) $1$ $\Z/2\Z$ $2.365456505$ $[1, 0, 1, -240487101, -1434927060152]$ \(y^2+xy+y=x^3-240487101x-1434927060152\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 20.12.0-4.c.1.1, 34.6.0.a.1, $\ldots$ $[(17966, 199767)]$
Next   displayed columns for results