Properties

Label 11913.d
Number of curves 4
Conductor 11913
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("11913.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 11913.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
11913.d1 11913i3 [1, 0, 0, -52894, -4682095] [2] 43200  
11913.d2 11913i2 [1, 0, 0, -4159, -32776] [2, 2] 21600  
11913.d3 11913i1 [1, 0, 0, -2354, 43395] [2] 10800 \(\Gamma_0(N)\)-optimal
11913.d4 11913i4 [1, 0, 0, 15696, -251181] [2] 43200  

Rank

sage: E.rank()
 

The elliptic curves in class 11913.d have rank \(0\).

Modular form 11913.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} - q^{4} - 2q^{5} - q^{6} + 4q^{7} + 3q^{8} + q^{9} + 2q^{10} + q^{11} - q^{12} + 2q^{13} - 4q^{14} - 2q^{15} - q^{16} - 2q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.