# Properties

 Label 11913.d Number of curves 4 Conductor 11913 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("11913.d1")

sage: E.isogeny_class()

## Elliptic curves in class 11913.d

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
11913.d1 11913i3 [1, 0, 0, -52894, -4682095]  43200
11913.d2 11913i2 [1, 0, 0, -4159, -32776] [2, 2] 21600
11913.d3 11913i1 [1, 0, 0, -2354, 43395]  10800 $$\Gamma_0(N)$$-optimal
11913.d4 11913i4 [1, 0, 0, 15696, -251181]  43200

## Rank

sage: E.rank()

The elliptic curves in class 11913.d have rank $$0$$.

## Modular form 11913.2.a.d

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} - q^{4} - 2q^{5} - q^{6} + 4q^{7} + 3q^{8} + q^{9} + 2q^{10} + q^{11} - q^{12} + 2q^{13} - 4q^{14} - 2q^{15} - q^{16} - 2q^{17} - q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 