Show commands for:
SageMath
sage: E = EllipticCurve("e1")
sage: E.isogeny_class()
Elliptic curves in class 118354e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
118354.b4 | 118354e1 | [1, 0, 1, -10516, -257838] | [2] | 417600 | \(\Gamma_0(N)\)-optimal |
118354.b3 | 118354e2 | [1, 0, 1, -149756, -22313454] | [2] | 835200 | |
118354.b2 | 118354e3 | [1, 0, 1, -358616, 82617810] | [2] | 1252800 | |
118354.b1 | 118354e4 | [1, 0, 1, -393426, 65602682] | [2] | 2505600 |
Rank
sage: E.rank()
The elliptic curves in class 118354e have rank \(2\).
Complex multiplication
The elliptic curves in class 118354e do not have complex multiplication.Modular form 118354.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.