Minimal Weierstrass equation
\(y^2+xy+y=x^3-10516x-257838\)
Mordell-Weil group structure
\(\Z^2 \times \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(172, 1654\right) \) | \( \left(-\frac{1083}{16}, \frac{26501}{64}\right) \) |
\(\hat{h}(P)\) | ≈ | $1.3440374248503848602137470606$ | $3.3457055345802685689263285195$ |
Torsion generators
\( \left(113, -57\right) \)
Integral points
\( \left(-87, 63\right) \), \( \left(-87, 23\right) \), \( \left(113, -57\right) \), \( \left(162, 1434\right) \), \( \left(162, -1597\right) \), \( \left(172, 1654\right) \), \( \left(172, -1827\right) \), \( \left(585, 13631\right) \), \( \left(585, -14217\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 118354 \) | = | \(2 \cdot 17 \cdot 59^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(45892420601408 \) | = | \(2^{6} \cdot 17 \cdot 59^{6} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{3048625}{1088} \) | = | \(2^{-6} \cdot 5^{3} \cdot 17^{-1} \cdot 29^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(4.2333874795653323813074200031\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.48538984121990239327506478265\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 8 \) = \( 2\cdot1\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 118354.2.a.b
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 417600 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 4.1096865530570789441841419297311223131 \)
Local data
This elliptic curve is semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{6}\) | Non-split multiplicative | 1 | 1 | 6 | 6 |
\(17\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(59\) | \(4\) | \(I_0^{*}\) | Additive | -1 | 2 | 6 | 0 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X16.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 2 & 1 \end{array}\right)$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
\(3\) | B |
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ordinary | ss | ordinary | ordinary | ordinary | nonsplit | ordinary | ss | ss | ordinary | ordinary | ordinary | ordinary | ss | add |
$\lambda$-invariant(s) | 2 | 2 | 2,6 | 2 | 2 | 2 | 2 | 2 | 4,2 | 2,2 | 2 | 2 | 2 | 2 | 2,2 | - |
$\mu$-invariant(s) | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | - |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class 118354.b
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-59}) \) | \(\Z/6\Z\) | Not in database |
$4$ | 4.4.3787328.2 | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{17}, \sqrt{-59})\) | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.2.463143405393.2 | \(\Z/6\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.8.4145373626699776.2 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.14343853379584.5 | \(\Z/12\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$18$ | 18.0.95896334836435873520348644773754515456.1 | \(\Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.