Properties

Label 118300k
Number of curves $1$
Conductor $118300$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 118300k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
118300.b1 118300k1 [0, 0, 0, 135200, 58220500] [] 3231360 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 118300k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 118300k do not have complex multiplication.

Modular form 118300.2.a.k

sage: E.q_eigenform(10)
 
\( q - 3q^{3} - q^{7} + 6q^{9} + 5q^{11} + q^{17} - 6q^{19} + O(q^{20}) \)