Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+4x+6\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+4xz^2+6z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+69x+470\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 2)$ | $1.1303356261795510066487525099$ | $\infty$ |
$(2, 3)$ | $0$ | $4$ |
Integral points
\( \left(-1, 0\right) \), \( \left(0, 2\right) \), \( \left(0, -3\right) \), \( \left(2, 3\right) \), \( \left(2, -6\right) \), \( \left(8, 18\right) \), \( \left(8, -27\right) \), \( \left(11, 30\right) \), \( \left(11, -42\right) \), \( \left(362, 6699\right) \), \( \left(362, -7062\right) \)
Invariants
Conductor: | $N$ | = | \( 117 \) | = | $3^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-28431$ | = | $-1 \cdot 3^{7} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{12167}{39} \) | = | $3^{-1} \cdot 13^{-1} \cdot 23^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.46220749835427791666838652017$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0115136426883327623660091386$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8584360026236014$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.677069548498262$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1303356261795510066487525099$ |
|
Real period: | $\Omega$ | ≈ | $2.6403251263283034696079214014$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $0.74611338874647625453737083466 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 0.746113389 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.640325 \cdot 1.130336 \cdot 4}{4^2} \\ & \approx 0.746113389\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 281 & 276 \\ 278 & 119 \end{array}\right),\left(\begin{array}{rr} 100 & 311 \\ 185 & 306 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 306 & 307 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 43 & 42 \\ 130 & 283 \end{array}\right),\left(\begin{array}{rr} 224 & 3 \\ 101 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 305 & 8 \\ 304 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$40255488$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | additive | $8$ | \( 13 \) |
$13$ | split multiplicative | $14$ | \( 9 = 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 117a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 39a4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.5616.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.900798402816.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.390971529.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.5330168064.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.5059495467.2 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | ord | ord | ord | split | ord | ss | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 1 | - | 1 | 1 | 3 | 2 | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.