Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, 571520, -3886317772]) # or

sage: E = EllipticCurve("11760.cl8")

gp: E = ellinit([0, 1, 0, 571520, -3886317772]) \\ or

gp: E = ellinit("11760.cl8")

magma: E := EllipticCurve([0, 1, 0, 571520, -3886317772]); // or

magma: E := EllipticCurve("11760.cl8");

$$y^2=x^3+x^2+571520x-3886317772$$

## Mordell-Weil group structure

$$\Z\times \Z/{4}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(1826, 57000\right)$$ $$\hat{h}(P)$$ ≈ $1.9920190655706998983571548517$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(4076, 257250\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(1451, 0\right)$$, $$(1826,\pm 57000)$$, $$(2018,\pm 74088)$$, $$(4076,\pm 257250)$$, $$(19826,\pm 2793000)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$11760$$ = $$2^{4} \cdot 3 \cdot 5 \cdot 7^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-6537284334000000000000$$ = $$-1 \cdot 2^{13} \cdot 3^{4} \cdot 5^{12} \cdot 7^{9}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{42841933504271}{13565917968750}$$ = $$2^{-1} \cdot 3^{-4} \cdot 5^{-12} \cdot 7^{-3} \cdot 11^{3} \cdot 3181^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1.9920190655706998983571548517$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.062692490284062479143209440886$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$768$$  = $$2^{2}\cdot2^{2}\cdot( 2^{2} \cdot 3 )\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 11760.2.a.cl

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{5} + q^{9} - 2q^{13} + q^{15} + 6q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 663552 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$5.9944625238699994529908534309606053093$$

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_5^{*}$$ Additive -1 4 13 1
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$5$$ $$12$$ $$I_{12}$$ Split multiplicative -1 1 12 12
$$7$$ $$4$$ $$I_3^{*}$$ Additive -1 2 9 3

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add split split add ss ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary - 2 4 - 1,1 1 3 1 1,1 1 1 1 1 1 1 - 1 0 - 0,0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 11760co consists of 6 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-14})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-21})$$ $$\Z/12\Z$$ Not in database $4$ 4.2.617400.3 $$\Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{6}, \sqrt{-14})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database $6$ 6.2.5184974592.5 $$\Z/12\Z$$ Not in database $8$ 8.0.1973822685184.2 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.0.24395696640000.2 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.2039281090560000.34 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.24395696640000.174 $$\Z/24\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/24\Z$$ Not in database $18$ 18.0.3002821060519358898679587861504000000000000.2 $$\Z/36\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.