Properties

Label 11760.cg
Number of curves $2$
Conductor $11760$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("11760.cg1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 11760.cg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
11760.cg1 11760cq1 [0, 1, 0, -240, 468] [2] 4608 \(\Gamma_0(N)\)-optimal
11760.cg2 11760cq2 [0, 1, 0, 880, 4500] [2] 9216  

Rank

sage: E.rank()
 

The elliptic curves in class 11760.cg have rank \(1\).

Modular form 11760.2.a.cg

sage: E.q_eigenform(10)
 
\( q + q^{3} + q^{5} + q^{9} - 2q^{11} + 2q^{13} + q^{15} - 4q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.