Show commands for:
SageMath
sage: E = EllipticCurve("bg1")
sage: E.isogeny_class()
Elliptic curves in class 11760.bg
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
11760.bg1 | 11760bx3 | [0, -1, 0, -292840, 61092592] | [2] | 73728 | |
11760.bg2 | 11760bx2 | [0, -1, 0, -18440, 944112] | [2, 2] | 36864 | |
11760.bg3 | 11760bx1 | [0, -1, 0, -2760, -34320] | [2] | 18432 | \(\Gamma_0(N)\)-optimal |
11760.bg4 | 11760bx4 | [0, -1, 0, 5080, 3164400] | [2] | 73728 |
Rank
sage: E.rank()
The elliptic curves in class 11760.bg have rank \(0\).
Complex multiplication
The elliptic curves in class 11760.bg do not have complex multiplication.Modular form 11760.2.a.bg
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.