Properties

Label 1170.l
Number of curves $2$
Conductor $1170$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1170.l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1170.l do not have complex multiplication.

Modular form 1170.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + 2 q^{7} + q^{8} - q^{10} + 4 q^{11} - q^{13} + 2 q^{14} + q^{16} - 4 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1170.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1170.l1 1170h2 \([1, -1, 1, -712748, -115762769]\) \(2034416504287874043/882294347833600\) \(17366199648408748800\) \([2]\) \(30720\) \(2.3879\)  
1170.l2 1170h1 \([1, -1, 1, 151252, -13465169]\) \(19441890357117957/15208161280000\) \(-299342238474240000\) \([2]\) \(15360\) \(2.0414\) \(\Gamma_0(N)\)-optimal