Properties

Label 116886q
Number of curves $1$
Conductor $116886$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 116886q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116886.l1 116886q1 \([1, 0, 1, -51895330, -156044723980]\) \(-595911384446123713/60681357950976\) \(-1573918146539731854360576\) \([]\) \(37306368\) \(3.3828\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 116886q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 116886q do not have complex multiplication.

Modular form 116886.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + 3q^{10} + q^{12} + 3q^{13} + q^{14} - 3q^{15} + q^{16} + 5q^{17} - q^{18} + 8q^{19} + O(q^{20})\)  Toggle raw display