Minimal Weierstrass equation
\(y^2+xy+y=x^3-1196524x+457952822\)
Mordell-Weil group structure
\(\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(820, 4913\right) \) | \( \left(-60, 23041\right) \) |
\(\hat{h}(P)\) | ≈ | $3.6233441940368527413377660639$ | $3.9038633292458396175999541424$ |
Torsion generators
\( \left(469, -235\right) \), \( \left(781, -391\right) \)
Integral points
\( \left(-60, 23041\right) \), \( \left(-60, -22982\right) \), \( \left(469, -235\right) \), \( \left(781, -391\right) \), \( \left(820, 4913\right) \), \( \left(820, -5734\right) \), \( \left(1119, 22255\right) \), \( \left(1119, -23375\right) \), \( \left(1483, 43367\right) \), \( \left(1483, -44851\right) \), \( \left(2656, 125234\right) \), \( \left(2656, -127891\right) \), \( \left(17031, 2209609\right) \), \( \left(17031, -2226641\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 116610 \) | = | \(2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(18994767994251562500 \) | = | \(2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 13^{6} \cdot 23^{4} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{39248884582600321}{3935264062500} \) | = | \(2^{-2} \cdot 3^{-2} \cdot 5^{-8} \cdot 23^{-4} \cdot 339841^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(11.322148552108623153670251606\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.21105864774380100075524264248\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 64 \) = \( 2\cdot2\cdot2\cdot2^{2}\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(4\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 116610.2.a.bb
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 3538944 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 9.5585494518499216944177271577408696129 \)
Local data
This elliptic curve is semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(3\) | \(2\) | \(I_{2}\) | Split multiplicative | -1 | 1 | 2 | 2 |
\(5\) | \(2\) | \(I_{8}\) | Non-split multiplicative | 1 | 1 | 8 | 8 |
\(13\) | \(4\) | \(I_0^{*}\) | Additive | 1 | 2 | 6 | 0 |
\(23\) | \(2\) | \(I_{4}\) | Non-split multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X101.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 6 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 7 \end{array}\right)$ and has index 24.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | Cs |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | nonsplit | ss | ordinary | add | ordinary | ordinary | nonsplit | ordinary | ss | ordinary | ordinary | ordinary | ss |
$\lambda$-invariant(s) | 4 | 5 | 2 | 2,2 | 2 | - | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 116610y
consists of 3 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-13}) \) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{13})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{13})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.151613669376.3 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.523799022862336.53 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | 8.0.165733284577536.33 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | 8.4.87329473560576.7 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.