# Properties

 Label 116610y2 Conductor $116610$ Discriminant $2.068\times 10^{15}$ j-invariant $$\frac{36330796409313601}{428490000}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -1166104, 484576406]) # or

sage: E = EllipticCurve("116610y2")

gp: E = ellinit([1, 0, 1, -1166104, 484576406]) \\ or

gp: E = ellinit("116610y2")

magma: E := EllipticCurve([1, 0, 1, -1166104, 484576406]); // or

magma: E := EllipticCurve("116610y2");

$$y^2 + x y + y = x^{3} - 1166104 x + 484576406$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-350, 29327\right)$$ $$\left(-51, 23347\right)$$ $$\hat{h}(P)$$ ≈ $2.083457346525191$ $1.95193166462292$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(625, -313\right)$$, $$\left(\frac{2487}{4}, -\frac{2491}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-1247, 623\right)$$, $$\left(-350, 29327\right)$$, $$\left(-350, -28978\right)$$, $$\left(-51, 23347\right)$$, $$\left(-51, -23297\right)$$, $$\left(478, 5798\right)$$, $$\left(478, -6277\right)$$, $$\left(616, 2\right)$$, $$\left(616, -619\right)$$, $$\left(625, -313\right)$$, $$\left(628, -127\right)$$, $$\left(628, -502\right)$$, $$\left(664, 1442\right)$$, $$\left(664, -2107\right)$$, $$\left(781, 6707\right)$$, $$\left(781, -7489\right)$$, $$\left(1678, 56198\right)$$, $$\left(1678, -57877\right)$$, $$\left(2653, 125423\right)$$, $$\left(2653, -128077\right)$$, $$\left(31201, 5492447\right)$$, $$\left(31201, -5523649\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$116610$$ = $$2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$2068239388410000$$ = $$2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{6} \cdot 23^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{36330796409313601}{428490000}$$ = $$2^{-4} \cdot 3^{-4} \cdot 5^{-4} \cdot 13^{3} \cdot 23^{-2} \cdot 73^{3} \cdot 349^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.83053713803$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.422117295488$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$2\cdot2^{2}\cdot2\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 116610.2.a.bb

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} - q^{15} + q^{16} - 6q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1769472 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$9.55854945185$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$5$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$13$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0
$$23$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X98.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 6 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 7 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split nonsplit ss ordinary add ordinary ordinary nonsplit ordinary ss ordinary ordinary ordinary ss 4 5 2 2,2 2 - 2 2 2 2 2,2 2 2 2 2,2 0 0 0 0,0 0 - 0 0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 116610y consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{13})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{6}, \sqrt{13})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database
$4$ $$\Q(\sqrt{-13}, \sqrt{-23})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-13}, \sqrt{23})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.