Properties

Label 116610.bb3
Conductor $116610$
Discriminant $1.899\times 10^{19}$
j-invariant \( \frac{39248884582600321}{3935264062500} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -1196524, 457952822]) # or
 
sage: E = EllipticCurve("116610.bb3")
 
gp: E = ellinit([1, 0, 1, -1196524, 457952822]) \\ or
 
gp: E = ellinit("116610.bb3")
 
magma: E := EllipticCurve([1, 0, 1, -1196524, 457952822]); // or
 
magma: E := EllipticCurve("116610.bb3");
 

\(y^2+xy+y=x^3-1196524x+457952822\)

Mordell-Weil group structure

\(\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(820, 4913\right) \)\( \left(-60, 23041\right) \)
\(\hat{h}(P)\) ≈  $3.6233441940368527413377660639$$3.9038633292458396175999541424$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(469, -235\right) \), \( \left(781, -391\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-60, 23041\right) \), \( \left(-60, -22982\right) \), \( \left(469, -235\right) \), \( \left(781, -391\right) \), \( \left(820, 4913\right) \), \( \left(820, -5734\right) \), \( \left(1119, 22255\right) \), \( \left(1119, -23375\right) \), \( \left(1483, 43367\right) \), \( \left(1483, -44851\right) \), \( \left(2656, 125234\right) \), \( \left(2656, -127891\right) \), \( \left(17031, 2209609\right) \), \( \left(17031, -2226641\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 116610 \)  =  \(2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(18994767994251562500 \)  =  \(2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 13^{6} \cdot 23^{4} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{39248884582600321}{3935264062500} \)  =  \(2^{-2} \cdot 3^{-2} \cdot 5^{-8} \cdot 23^{-4} \cdot 339841^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(2\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(11.322148552108623153670251606\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.21105864774380100075524264248\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 64 \)  = \( 2\cdot2\cdot2\cdot2^{2}\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 116610.2.a.bb

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} - q^{15} + q^{16} - 6q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 3538944
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L^{(2)}(E,1)/2! \) ≈ \( 9.5585494518499216944177271577408696129 \)

Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \(I_{2}\) Non-split multiplicative 1 1 2 2
\(3\) \(2\) \(I_{2}\) Split multiplicative -1 1 2 2
\(5\) \(2\) \(I_{8}\) Non-split multiplicative 1 1 8 8
\(13\) \(4\) \(I_0^{*}\) Additive 1 2 6 0
\(23\) \(2\) \(I_{4}\) Non-split multiplicative 1 1 4 4

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X101.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 6 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 7 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split nonsplit ss ordinary add ordinary ordinary nonsplit ordinary ss ordinary ordinary ordinary ss
$\lambda$-invariant(s) 4 5 2 2,2 2 - 2 2 2 2 2,2 2 2 2 2,2
$\mu$-invariant(s) 1 0 0 0,0 0 - 0 0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 116610.bb consists of 3 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-13}) \) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{6}, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-6}, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.151613669376.3 \(\Z/4\Z \times \Z/4\Z\) Not in database
$8$ 8.0.523799022862336.53 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.0.165733284577536.33 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.4.87329473560576.7 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.