Properties

Label 116281.d
Number of curves 3
Conductor 116281
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("116281.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 116281.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
116281.d1 116281d3 [0, 1, 1, -909356180, -10555082202197] [] 17550000  
116281.d2 116281d2 [0, 1, 1, -1201570, -918633897] [] 3510000  
116281.d3 116281d1 [0, 1, 1, -38760, 6962863] [] 702000 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 116281.d have rank \(1\).

Modular form 116281.2.a.d

sage: E.q_eigenform(10)
 
\( q + 2q^{2} + q^{3} + 2q^{4} + q^{5} + 2q^{6} + 2q^{7} - 2q^{9} + 2q^{10} + 2q^{12} + 4q^{13} + 4q^{14} + q^{15} - 4q^{16} - 2q^{17} - 4q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.