Properties

Label 115920eb
Number of curves $2$
Conductor $115920$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("eb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 115920eb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.cy1 115920eb1 \([0, 0, 0, -3387, 41834]\) \(1439069689/579600\) \(1730676326400\) \([2]\) \(147456\) \(1.0463\) \(\Gamma_0(N)\)-optimal
115920.cy2 115920eb2 \([0, 0, 0, 11013, 303914]\) \(49471280711/41992020\) \(-125387499847680\) \([2]\) \(294912\) \(1.3928\)  

Rank

sage: E.rank()
 

The elliptic curves in class 115920eb have rank \(0\).

Complex multiplication

The elliptic curves in class 115920eb do not have complex multiplication.

Modular form 115920.2.a.eb

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 2q^{11} + 4q^{13} + 6q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.