Properties

Label 115920cc
Number of curves $2$
Conductor $115920$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("cc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 115920cc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.n1 115920cc1 \([0, 0, 0, -20403, 1100402]\) \(8493409990827/185150000\) \(20476108800000\) \([2]\) \(245760\) \(1.3425\) \(\Gamma_0(N)\)-optimal
115920.n2 115920cc2 \([0, 0, 0, 1677, 3356978]\) \(4716275733/44023437500\) \(-4868640000000000\) \([2]\) \(491520\) \(1.6890\)  

Rank

sage: E.rank()
 

The elliptic curves in class 115920cc have rank \(1\).

Complex multiplication

The elliptic curves in class 115920cc do not have complex multiplication.

Modular form 115920.2.a.cc

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 2q^{11} + 2q^{13} + 2q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.