# Properties

 Label 115920cb2 Conductor $115920$ Discriminant $-1.288\times 10^{30}$ j-invariant $$\frac{22649115256119592694355357}{15973509811739648000000}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 2546397837, -23128680192462])

gp: E = ellinit([0, 0, 0, 2546397837, -23128680192462])

magma: E := EllipticCurve([0, 0, 0, 2546397837, -23128680192462]);

$$y^2=x^3+2546397837x-23128680192462$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{7600675756264706895779314071413945018835703}{493719105831883707225976673787934056961}, \frac{48717386933038516671276884669970074193437717114129788200665794294}{10970335274834523160595113973291291542852479578934655415041}\right)$$ $$\hat{h}(P)$$ ≈ $99.350733343653333631295647733$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(8814, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(8814, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$115920$$ = $$2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-1287809407485835229528064000000$$ = $$-1 \cdot 2^{28} \cdot 3^{9} \cdot 5^{6} \cdot 7^{14} \cdot 23$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{22649115256119592694355357}{15973509811739648000000}$$ = $$2^{-16} \cdot 3^{3} \cdot 5^{-6} \cdot 7^{-14} \cdot 23^{-1} \cdot 94311031^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$4.4660220893342152612533394682\dots$$ Stable Faltings height: $$2.9489156922731876832896734190\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$99.350733343653333631295647733\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.015333088014675439997578579423\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$16$$  = $$2\cdot2\cdot2\cdot2\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 115920.2.a.t

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{5} - q^{7} + 2q^{11} - 6q^{13} + 6q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 148635648 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$6.0934141547231461278489187567712461801$$

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{20}^{*}$$ Additive -1 4 28 16
$$3$$ $$2$$ $$III^{*}$$ Additive 1 2 9 0
$$5$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$7$$ $$2$$ $$I_{14}$$ Non-split multiplicative 1 1 14 14
$$23$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add nonsplit nonsplit ordinary ordinary ordinary ss split ordinary ordinary ordinary ordinary ordinary ss - - 1 1 1 1 1 1,1 2 1 1 1 1 1 1,1 - - 0 0 0 0 0 0,0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 115920cb consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-69})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $4$ 4.2.3042900.4 $$\Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.