# Properties

 Label 115920c Number of curves $2$ Conductor $115920$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("c1")

sage: E.isogeny_class()

## Elliptic curves in class 115920c

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.h1 115920c1 $$[0, 0, 0, -783, -2322]$$ $$10536048/5635$$ $$28393908480$$ $$$$ $$92160$$ $$0.69705$$ $$\Gamma_0(N)$$-optimal
115920.h2 115920c2 $$[0, 0, 0, 2997, -18198]$$ $$147704148/92575$$ $$-1865885414400$$ $$$$ $$184320$$ $$1.0436$$

## Rank

sage: E.rank()

The elliptic curves in class 115920c have rank $$0$$.

## Complex multiplication

The elliptic curves in class 115920c do not have complex multiplication.

## Modular form 115920.2.a.c

sage: E.q_eigenform(10)

$$q - q^{5} - q^{7} - 4q^{11} + 4q^{13} - 2q^{17} - 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 