# Properties

 Label 115920.n Number of curves $2$ Conductor $115920$ CM no Rank $1$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("n1")

sage: E.isogeny_class()

## Elliptic curves in class 115920.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.n1 115920cc1 $$[0, 0, 0, -20403, 1100402]$$ $$8493409990827/185150000$$ $$20476108800000$$ $$$$ $$245760$$ $$1.3425$$ $$\Gamma_0(N)$$-optimal
115920.n2 115920cc2 $$[0, 0, 0, 1677, 3356978]$$ $$4716275733/44023437500$$ $$-4868640000000000$$ $$$$ $$491520$$ $$1.6890$$

## Rank

sage: E.rank()

The elliptic curves in class 115920.n have rank $$1$$.

## Complex multiplication

The elliptic curves in class 115920.n do not have complex multiplication.

## Modular form 115920.2.a.n

sage: E.q_eigenform(10)

$$q - q^{5} - q^{7} - 2q^{11} + 2q^{13} + 2q^{17} + 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 