Properties

Label 115920.el
Number of curves $2$
Conductor $115920$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("el1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 115920.el

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.el1 115920by2 \([0, 0, 0, -9147, -335414]\) \(56689453298/253575\) \(378585446400\) \([2]\) \(196608\) \(1.0735\)  
115920.el2 115920by1 \([0, 0, 0, -867, 754]\) \(96550276/55545\) \(41464120320\) \([2]\) \(98304\) \(0.72694\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 115920.el have rank \(1\).

Complex multiplication

The elliptic curves in class 115920.el do not have complex multiplication.

Modular form 115920.2.a.el

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 2 q^{11} + 6 q^{13} - 2 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.