# Properties

 Label 1155n Number of curves $2$ Conductor $1155$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("1155.c1")

sage: E.isogeny_class()

## Elliptic curves in class 1155n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1155.c2 1155n1 [0, 1, 1, -8940, 378056]  6000 $$\Gamma_0(N)$$-optimal
1155.c1 1155n2 [0, 1, 1, -26790, -31917424] [] 30000

## Rank

sage: E.rank()

The elliptic curves in class 1155n have rank $$1$$.

## Modular form1155.2.a.c

sage: E.q_eigenform(10)

$$q - 2q^{2} + q^{3} + 2q^{4} + q^{5} - 2q^{6} + q^{7} + q^{9} - 2q^{10} + q^{11} + 2q^{12} - 6q^{13} - 2q^{14} + q^{15} - 4q^{16} - 7q^{17} - 2q^{18} - 5q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 