Minimal Weierstrass equation
\(y^2+xy=x^3-433978x+93753572\)
Mordell-Weil group structure
$\Z/{10}\Z$
Torsion generators
\( \left(212, 3254\right) \)
Integral points
\( \left(-748, 374\right) \), \( \left(-208, 13334\right) \), \( \left(-208, -13126\right) \), \( \left(212, 3254\right) \), \( \left(212, -3466\right) \), \( \left(548, 4262\right) \), \( \left(548, -4810\right) \), \( \left(1556, 55670\right) \), \( \left(1556, -57226\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 11550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $1430887068205056000 $ | = | $2^{20} \cdot 3^{10} \cdot 5^{3} \cdot 7^{5} \cdot 11 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{72313087342699809269}{11447096545640448} \) | = | $2^{-20} \cdot 3^{-10} \cdot 7^{-5} \cdot 11^{-1} \cdot 149^{3} \cdot 27961^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $2.2064285345707011429065784048\dots$ | ||
Stable Faltings height: | $1.8040690564621760492563885715\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.25788941075355022381234201319\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 2000 $ = $ ( 2^{2} \cdot 5 )\cdot( 2 \cdot 5 )\cdot2\cdot5\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $10$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 5.1577882150710044762468402638 $ |
Modular invariants
Modular form 11550.2.a.cu
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 192000 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $20$ | $I_{20}$ | Split multiplicative | -1 | 1 | 20 | 20 |
$3$ | $10$ | $I_{10}$ | Split multiplicative | -1 | 1 | 10 | 10 |
$5$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
$7$ | $5$ | $I_{5}$ | Split multiplicative | -1 | 1 | 5 | 5 |
$11$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B.1.1 | 5.24.0.1 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | split | split | add | split | split |
$\lambda$-invariant(s) | 4 | 1 | - | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 11550.cu
consists of 4 curves linked by isogenies of
degrees dividing 10.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{10}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{385}) \) | \(\Z/2\Z \times \Z/10\Z\) | Not in database |
$4$ | 4.0.1386000.2 | \(\Z/20\Z\) | Not in database |
$8$ | 8.0.11389585284000000.112 | \(\Z/2\Z \times \Z/20\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/20\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/30\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/40\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/30\Z\) | Not in database |
$20$ | 20.0.1402274470934209014892578125.2 | \(\Z/5\Z \times \Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.