Properties

Label 1155.k
Number of curves $4$
Conductor $1155$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("1155.k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1155.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1155.k1 1155f3 [1, 1, 0, -20702, -333459] [4] 4608  
1155.k2 1155f2 [1, 1, 0, -16247, -803016] [2, 2] 2304  
1155.k3 1155f1 [1, 1, 0, -16242, -803529] [2] 1152 \(\Gamma_0(N)\)-optimal
1155.k4 1155f4 [1, 1, 0, -11872, -1239641] [2] 4608  

Rank

sage: E.rank()
 

The elliptic curves in class 1155.k have rank \(1\).

Modular form 1155.2.a.k

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} + q^{7} - 3q^{8} + q^{9} + q^{10} - q^{11} + q^{12} - 2q^{13} + q^{14} - q^{15} - q^{16} - 6q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.