Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1155.a1 |
1155g1 |
1155.a |
1155g |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5^{3} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.143125989$ |
$1$ |
|
$6$ |
$144$ |
$-0.465187$ |
$-4096/28875$ |
$[0, -1, 1, 0, 8]$ |
\(y^2+y=x^3-x^2+8\) |
1155.b1 |
1155i1 |
1155.b |
1155i |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.077057682$ |
$1$ |
|
$10$ |
$336$ |
$-0.003631$ |
$-222985990144/841995$ |
$[0, 1, 1, -126, 506]$ |
\(y^2+y=x^3+x^2-126x+506\) |
1155.c1 |
1155n2 |
1155.c |
1155n |
$2$ |
$5$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5 \cdot 7 \cdot 11^{15} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$0.866250978$ |
$1$ |
|
$0$ |
$30000$ |
$2.064484$ |
$-2126464142970105856/438611057788643355$ |
$[0, 1, 1, -26790, -31917424]$ |
\(y^2+y=x^3+x^2-26790x-31917424\) |
1155.c2 |
1155n1 |
1155.c |
1155n |
$2$ |
$5$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{5} \cdot 5^{5} \cdot 7^{5} \cdot 11^{3} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.173250195$ |
$1$ |
|
$30$ |
$6000$ |
$1.259766$ |
$-79028701534867456/16987307596875$ |
$[0, 1, 1, -8940, 378056]$ |
\(y^2+y=x^3+x^2-8940x+378056\) |
1155.d1 |
1155a3 |
1155.d |
1155a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3 \cdot 5 \cdot 7^{4} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1.011716055$ |
$1$ |
|
$4$ |
$384$ |
$0.270145$ |
$75627935783569/396165$ |
$[1, 1, 1, -881, 9698]$ |
\(y^2+xy+y=x^3+x^2-881x+9698\) |
1155.d2 |
1155a2 |
1155.d |
1155a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$0.505858027$ |
$1$ |
|
$14$ |
$192$ |
$-0.076428$ |
$19443408769/1334025$ |
$[1, 1, 1, -56, 128]$ |
\(y^2+xy+y=x^3+x^2-56x+128\) |
1155.d3 |
1155a1 |
1155.d |
1155a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1.011716055$ |
$1$ |
|
$5$ |
$96$ |
$-0.423002$ |
$148035889/31185$ |
$[1, 1, 1, -11, -16]$ |
\(y^2+xy+y=x^3+x^2-11x-16\) |
1155.d4 |
1155a4 |
1155.d |
1155a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5^{4} \cdot 7 \cdot 11^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1.011716055$ |
$1$ |
|
$4$ |
$384$ |
$0.270145$ |
$12994449551/192163125$ |
$[1, 1, 1, 49, 674]$ |
\(y^2+xy+y=x^3+x^2+49x+674\) |
1155.e1 |
1155e5 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$1.700180605$ |
$1$ |
|
$4$ |
$2048$ |
$1.013866$ |
$257260669489908001/14267882475$ |
$[1, 1, 1, -13250, -592540]$ |
\(y^2+xy+y=x^3+x^2-13250x-592540\) |
1155.e2 |
1155e3 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5^{4} \cdot 7^{4} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.6 |
2Cs |
$0.850090302$ |
$1$ |
|
$12$ |
$1024$ |
$0.667294$ |
$74093292126001/14707625625$ |
$[1, 1, 1, -875, -8440]$ |
\(y^2+xy+y=x^3+x^2-875x-8440\) |
1155.e3 |
1155e2 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1.700180605$ |
$1$ |
|
$14$ |
$512$ |
$0.320720$ |
$2177286259681/161417025$ |
$[1, 1, 1, -270, 1482]$ |
\(y^2+xy+y=x^3+x^2-270x+1482\) |
1155.e4 |
1155e1 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$3.400361211$ |
$1$ |
|
$5$ |
$256$ |
$-0.025854$ |
$2058561081361/12705$ |
$[1, 1, 1, -265, 1550]$ |
\(y^2+xy+y=x^3+x^2-265x+1550\) |
1155.e5 |
1155e4 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5 \cdot 7 \cdot 11^{8} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$3.400361211$ |
$1$ |
|
$4$ |
$1024$ |
$0.667294$ |
$1833318007919/22507682505$ |
$[1, 1, 1, 255, 7152]$ |
\(y^2+xy+y=x^3+x^2+255x+7152\) |
1155.e6 |
1155e6 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$0.425045151$ |
$1$ |
|
$10$ |
$2048$ |
$1.013866$ |
$666688497209279/1381398046875$ |
$[1, 1, 1, 1820, -47248]$ |
\(y^2+xy+y=x^3+x^2+1820x-47248\) |
1155.f1 |
1155m5 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{3} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$7680$ |
$1.899137$ |
$3135316978843283198764801/571725$ |
$[1, 0, 0, -3049200, -2049655293]$ |
\(y^2+xy=x^3-3049200x-2049655293\) |
1155.f2 |
1155m3 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 11^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.6 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$3840$ |
$1.552563$ |
$765458482133960722801/326869475625$ |
$[1, 0, 0, -190575, -32037768]$ |
\(y^2+xy=x^3-190575x-32037768\) |
1155.f3 |
1155m6 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{3} \cdot 5^{8} \cdot 7 \cdot 11^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$1$ |
$1$ |
|
$0$ |
$7680$ |
$1.899137$ |
$-754127868744065783521/15825714261328125$ |
$[1, 0, 0, -189630, -32370975]$ |
\(y^2+xy=x^3-189630x-32370975\) |
1155.f4 |
1155m4 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{24} \cdot 5 \cdot 7^{2} \cdot 11 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$1$ |
$1$ |
|
$2$ |
$3840$ |
$1.552563$ |
$1821931919215868881/761147600816295$ |
$[1, 0, 0, -25445, 821730]$ |
\(y^2+xy=x^3-25445x+821730\) |
1155.f5 |
1155m2 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{12} \cdot 5^{2} \cdot 7^{4} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$1920$ |
$1.205990$ |
$189674274234120481/3859869269025$ |
$[1, 0, 0, -11970, -496125]$ |
\(y^2+xy=x^3-11970x-496125\) |
1155.f6 |
1155m1 |
1155.f |
1155m |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{6} \cdot 5 \cdot 7^{8} \cdot 11 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$1$ |
$1$ |
|
$3$ |
$960$ |
$0.859416$ |
$4733169839/231139696095$ |
$[1, 0, 0, 35, -23128]$ |
\(y^2+xy=x^3+35x-23128\) |
1155.g1 |
1155d1 |
1155.g |
1155d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{5} \cdot 5 \cdot 7 \cdot 11^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.286254962$ |
$1$ |
|
$6$ |
$400$ |
$0.437218$ |
$-250523582464/1369738755$ |
$[0, -1, 1, -131, 1916]$ |
\(y^2+y=x^3-x^2-131x+1916\) |
1155.h1 |
1155j2 |
1155.h |
1155j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5^{3} \cdot 7 \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$5.610642804$ |
$1$ |
|
$0$ |
$432$ |
$0.323350$ |
$-65860951343104/3493875$ |
$[0, 1, 1, -841, -9674]$ |
\(y^2+y=x^3+x^2-841x-9674\) |
1155.h2 |
1155j1 |
1155.h |
1155j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{3} \cdot 5 \cdot 7^{3} \cdot 11 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1.870214268$ |
$1$ |
|
$6$ |
$144$ |
$-0.225955$ |
$-262144/509355$ |
$[0, 1, 1, -1, -35]$ |
\(y^2+y=x^3+x^2-x-35\) |
1155.i1 |
1155k1 |
1155.i |
1155k |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{7} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.066101914$ |
$1$ |
|
$10$ |
$784$ |
$0.629956$ |
$17869652393984/13156171875$ |
$[0, 1, 1, 545, 2734]$ |
\(y^2+y=x^3+x^2+545x+2734\) |
1155.j1 |
1155c3 |
1155.j |
1155c |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3 \cdot 5^{3} \cdot 7^{4} \cdot 11^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.751596$ |
$1058993490188089/13182390375$ |
$[1, 1, 0, -2123, -38142]$ |
\(y^2+xy=x^3+x^2-2123x-38142\) |
1155.j2 |
1155c2 |
1155.j |
1155c |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{6} \cdot 7^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$576$ |
$0.405023$ |
$1697509118089/833765625$ |
$[1, 1, 0, -248, 483]$ |
\(y^2+xy=x^3+x^2-248x+483\) |
1155.j3 |
1155c1 |
1155.j |
1155c |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5^{3} \cdot 7 \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$288$ |
$0.058449$ |
$932288503609/779625$ |
$[1, 1, 0, -203, 1032]$ |
\(y^2+xy=x^3+x^2-203x+1032\) |
1155.j4 |
1155c4 |
1155.j |
1155c |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5^{12} \cdot 7 \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$1152$ |
$0.751596$ |
$82375335041831/56396484375$ |
$[1, 1, 0, 907, 4872]$ |
\(y^2+xy=x^3+x^2+907x+4872\) |
1155.k1 |
1155f3 |
1155.k |
1155f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5^{12} \cdot 7^{4} \cdot 11 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.7 |
2B |
$1.118052497$ |
$1$ |
|
$6$ |
$4608$ |
$1.515476$ |
$981281029968144361/522287841796875$ |
$[1, 1, 0, -20702, -333459]$ |
\(y^2+xy=x^3+x^2-20702x-333459\) |
1155.k2 |
1155f2 |
1155.k |
1155f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{8} \cdot 5^{6} \cdot 7^{2} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$2.236104994$ |
$1$ |
|
$6$ |
$2304$ |
$1.168903$ |
$474334834335054841/607815140625$ |
$[1, 1, 0, -16247, -803016]$ |
\(y^2+xy=x^3+x^2-16247x-803016\) |
1155.k3 |
1155f1 |
1155.k |
1155f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5^{3} \cdot 7 \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$4.472209988$ |
$1$ |
|
$3$ |
$1152$ |
$0.822330$ |
$473897054735271721/779625$ |
$[1, 1, 0, -16242, -803529]$ |
\(y^2+xy=x^3+x^2-16242x-803529\) |
1155.k4 |
1155f4 |
1155.k |
1155f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{16} \cdot 5^{3} \cdot 7 \cdot 11^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.8 |
2B |
$4.472209988$ |
$1$ |
|
$0$ |
$4608$ |
$1.515476$ |
$-185077034913624841/551466161890875$ |
$[1, 1, 0, -11872, -1239641]$ |
\(y^2+xy=x^3+x^2-11872x-1239641\) |
1155.l1 |
1155h3 |
1155.l |
1155h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$4.682086988$ |
$1$ |
|
$0$ |
$384$ |
$0.363592$ |
$957681397954009/31185$ |
$[1, 0, 1, -2054, -35989]$ |
\(y^2+xy+y=x^3-2054x-35989\) |
1155.l2 |
1155h4 |
1155.l |
1155h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3 \cdot 5 \cdot 7^{4} \cdot 11^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$1.170521747$ |
$1$ |
|
$2$ |
$384$ |
$0.363592$ |
$932288503609/527295615$ |
$[1, 0, 1, -204, 151]$ |
\(y^2+xy+y=x^3-204x+151\) |
1155.l3 |
1155h2 |
1155.l |
1155h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$2.341043494$ |
$1$ |
|
$4$ |
$192$ |
$0.017018$ |
$234770924809/1334025$ |
$[1, 0, 1, -129, -569]$ |
\(y^2+xy+y=x^3-129x-569\) |
1155.l4 |
1155h1 |
1155.l |
1155h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3 \cdot 5^{4} \cdot 7 \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$4.682086988$ |
$1$ |
|
$1$ |
$96$ |
$-0.329555$ |
$-4826809/144375$ |
$[1, 0, 1, -4, -19]$ |
\(y^2+xy+y=x^3-4x-19\) |
1155.m1 |
1155l3 |
1155.m |
1155l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{4} \cdot 5^{4} \cdot 7^{4} \cdot 11^{3} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$2$ |
$7680$ |
$1.743290$ |
$21026497979043461623321/161783881875$ |
$[1, 0, 1, -575018, 167782133]$ |
\(y^2+xy+y=x^3-575018x+167782133\) |
1155.m2 |
1155l2 |
1155.m |
1155l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$3840$ |
$1.396715$ |
$5143681768032498601/14238434358225$ |
$[1, 0, 1, -35963, 2615681]$ |
\(y^2+xy+y=x^3-35963x+2615681\) |
1155.m3 |
1155l4 |
1155.m |
1155l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{4} \cdot 5 \cdot 7 \cdot 11^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$7680$ |
$1.743290$ |
$-1143792273008057401/8897444448004035$ |
$[1, 0, 1, -21788, 4702241]$ |
\(y^2+xy+y=x^3-21788x+4702241\) |
1155.m4 |
1155l1 |
1155.m |
1155l |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{16} \cdot 5 \cdot 7 \cdot 11^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$1920$ |
$1.050142$ |
$3481467828171481/2005331497785$ |
$[1, 0, 1, -3158, 4403]$ |
\(y^2+xy+y=x^3-3158x+4403\) |
1155.n1 |
1155b1 |
1155.n |
1155b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{13} \cdot 5 \cdot 7^{7} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$9.244433869$ |
$1$ |
|
$0$ |
$4368$ |
$1.345606$ |
$63090423356788736/72214645051395$ |
$[0, -1, 1, 8294, 284721]$ |
\(y^2+y=x^3-x^2+8294x+284721\) |