Learn more

Refine search


Results (41 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1155.a1 1155.a \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.143125989$ $[0, -1, 1, 0, 8]$ \(y^2+y=x^3-x^2+8\)
1155.b1 1155.b \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.077057682$ $[0, 1, 1, -126, 506]$ \(y^2+y=x^3+x^2-126x+506\)
1155.c1 1155.c \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.866250978$ $[0, 1, 1, -26790, -31917424]$ \(y^2+y=x^3+x^2-26790x-31917424\)
1155.c2 1155.c \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/5\Z$ $0.173250195$ $[0, 1, 1, -8940, 378056]$ \(y^2+y=x^3+x^2-8940x+378056\)
1155.d1 1155.d \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.011716055$ $[1, 1, 1, -881, 9698]$ \(y^2+xy+y=x^3+x^2-881x+9698\)
1155.d2 1155.d \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.505858027$ $[1, 1, 1, -56, 128]$ \(y^2+xy+y=x^3+x^2-56x+128\)
1155.d3 1155.d \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.011716055$ $[1, 1, 1, -11, -16]$ \(y^2+xy+y=x^3+x^2-11x-16\)
1155.d4 1155.d \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.011716055$ $[1, 1, 1, 49, 674]$ \(y^2+xy+y=x^3+x^2+49x+674\)
1155.e1 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.700180605$ $[1, 1, 1, -13250, -592540]$ \(y^2+xy+y=x^3+x^2-13250x-592540\)
1155.e2 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.850090302$ $[1, 1, 1, -875, -8440]$ \(y^2+xy+y=x^3+x^2-875x-8440\)
1155.e3 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.700180605$ $[1, 1, 1, -270, 1482]$ \(y^2+xy+y=x^3+x^2-270x+1482\)
1155.e4 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/4\Z$ $3.400361211$ $[1, 1, 1, -265, 1550]$ \(y^2+xy+y=x^3+x^2-265x+1550\)
1155.e5 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/4\Z$ $3.400361211$ $[1, 1, 1, 255, 7152]$ \(y^2+xy+y=x^3+x^2+255x+7152\)
1155.e6 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.425045151$ $[1, 1, 1, 1820, -47248]$ \(y^2+xy+y=x^3+x^2+1820x-47248\)
1155.f1 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -3049200, -2049655293]$ \(y^2+xy=x^3-3049200x-2049655293\)
1155.f2 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -190575, -32037768]$ \(y^2+xy=x^3-190575x-32037768\)
1155.f3 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -189630, -32370975]$ \(y^2+xy=x^3-189630x-32370975\)
1155.f4 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -25445, 821730]$ \(y^2+xy=x^3-25445x+821730\)
1155.f5 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -11970, -496125]$ \(y^2+xy=x^3-11970x-496125\)
1155.f6 1155.f \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 35, -23128]$ \(y^2+xy=x^3+35x-23128\)
1155.g1 1155.g \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.286254962$ $[0, -1, 1, -131, 1916]$ \(y^2+y=x^3-x^2-131x+1916\)
1155.h1 1155.h \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $5.610642804$ $[0, 1, 1, -841, -9674]$ \(y^2+y=x^3+x^2-841x-9674\)
1155.h2 1155.h \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/3\Z$ $1.870214268$ $[0, 1, 1, -1, -35]$ \(y^2+y=x^3+x^2-x-35\)
1155.i1 1155.i \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.066101914$ $[0, 1, 1, 545, 2734]$ \(y^2+y=x^3+x^2+545x+2734\)
1155.j1 1155.j \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2123, -38142]$ \(y^2+xy=x^3+x^2-2123x-38142\)
1155.j2 1155.j \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -248, 483]$ \(y^2+xy=x^3+x^2-248x+483\)
1155.j3 1155.j \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -203, 1032]$ \(y^2+xy=x^3+x^2-203x+1032\)
1155.j4 1155.j \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 907, 4872]$ \(y^2+xy=x^3+x^2+907x+4872\)
1155.k1 1155.k \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/4\Z$ $1.118052497$ $[1, 1, 0, -20702, -333459]$ \(y^2+xy=x^3+x^2-20702x-333459\)
1155.k2 1155.k \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.236104994$ $[1, 1, 0, -16247, -803016]$ \(y^2+xy=x^3+x^2-16247x-803016\)
1155.k3 1155.k \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $4.472209988$ $[1, 1, 0, -16242, -803529]$ \(y^2+xy=x^3+x^2-16242x-803529\)
1155.k4 1155.k \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $4.472209988$ $[1, 1, 0, -11872, -1239641]$ \(y^2+xy=x^3+x^2-11872x-1239641\)
1155.l1 1155.l \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $4.682086988$ $[1, 0, 1, -2054, -35989]$ \(y^2+xy+y=x^3-2054x-35989\)
1155.l2 1155.l \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.170521747$ $[1, 0, 1, -204, 151]$ \(y^2+xy+y=x^3-204x+151\)
1155.l3 1155.l \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.341043494$ $[1, 0, 1, -129, -569]$ \(y^2+xy+y=x^3-129x-569\)
1155.l4 1155.l \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $4.682086988$ $[1, 0, 1, -4, -19]$ \(y^2+xy+y=x^3-4x-19\)
1155.m1 1155.m \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -575018, 167782133]$ \(y^2+xy+y=x^3-575018x+167782133\)
1155.m2 1155.m \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -35963, 2615681]$ \(y^2+xy+y=x^3-35963x+2615681\)
1155.m3 1155.m \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -21788, 4702241]$ \(y^2+xy+y=x^3-21788x+4702241\)
1155.m4 1155.m \( 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3158, 4403]$ \(y^2+xy+y=x^3-3158x+4403\)
1155.n1 1155.n \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $9.244433869$ $[0, -1, 1, 8294, 284721]$ \(y^2+y=x^3-x^2+8294x+284721\)
  Download to