Properties

Label 1152.p
Number of curves $2$
Conductor $1152$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1152.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1152.p1 1152m2 \([0, 0, 0, -24, -32]\) \(3456\) \(442368\) \([2]\) \(128\) \(-0.21042\)  
1152.p2 1152m1 \([0, 0, 0, -9, 10]\) \(23328\) \(3456\) \([2]\) \(64\) \(-0.55700\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1152.p have rank \(0\).

Complex multiplication

The elliptic curves in class 1152.p do not have complex multiplication.

Modular form 1152.2.a.p

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + 2 q^{7} + 4 q^{11} - 2 q^{13} - 4 q^{17} + 4 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.