# Properties

 Label 1152.c Number of curves $2$ Conductor $1152$ CM no Rank $0$ Graph

# Related objects

Show commands: SageMath
E = EllipticCurve("c1")

E.isogeny_class()

## Elliptic curves in class 1152.c

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1152.c1 1152h1 $$[0, 0, 0, -21, -34]$$ $$10976$$ $$93312$$ $$[2]$$ $$96$$ $$-0.30712$$ $$\Gamma_0(N)$$-optimal
1152.c2 1152h2 $$[0, 0, 0, 24, -160]$$ $$128$$ $$-11943936$$ $$[2]$$ $$192$$ $$0.039450$$

## Rank

sage: E.rank()

The elliptic curves in class 1152.c have rank $$0$$.

## Complex multiplication

The elliptic curves in class 1152.c do not have complex multiplication.

## Modular form1152.2.a.c

sage: E.q_eigenform(10)

$$q - 2 q^{5} - 4 q^{7} + 2 q^{11} + 2 q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.