Learn more

Refine search


Results (40 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1152.a1 1152.a \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1272, -17440]$ \(y^2=x^3-1272x-17440\)
1152.a2 1152.a \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -57, -430]$ \(y^2=x^3-57x-430\)
1152.b1 1152.b \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.663785825$ $[0, 0, 0, -1272, 17440]$ \(y^2=x^3-1272x+17440\)
1152.b2 1152.b \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.327571650$ $[0, 0, 0, -57, 430]$ \(y^2=x^3-57x+430\)
1152.c1 1152.c \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -21, -34]$ \(y^2=x^3-21x-34\)
1152.c2 1152.c \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24, -160]$ \(y^2=x^3+24x-160\)
1152.d1 1152.d \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -216, -864]$ \(y^2=x^3-216x-864\)
1152.d2 1152.d \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -81, 270]$ \(y^2=x^3-81x+270\)
1152.e1 1152.e \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.194272890$ $[0, 0, 0, -36, -80]$ \(y^2=x^3-36x-80\)
1152.e2 1152.e \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.597136445$ $[0, 0, 0, -6, 4]$ \(y^2=x^3-6x+4\)
1152.f1 1152.f \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.513210019$ $[0, 0, 0, -216, 864]$ \(y^2=x^3-216x+864\)
1152.f2 1152.f \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $3.026420039$ $[0, 0, 0, -81, -270]$ \(y^2=x^3-81x-270\)
1152.g1 1152.g \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.388037535$ $[0, 0, 0, -36, 80]$ \(y^2=x^3-36x+80\)
1152.g2 1152.g \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.776075070$ $[0, 0, 0, -6, -4]$ \(y^2=x^3-6x-4\)
1152.h1 1152.h \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -21, 34]$ \(y^2=x^3-21x+34\)
1152.h2 1152.h \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24, 160]$ \(y^2=x^3+24x+160\)
1152.i1 1152.i \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.848371993$ $[0, 0, 0, -120, -416]$ \(y^2=x^3-120x-416\)
1152.i2 1152.i \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.696743987$ $[0, 0, 0, 15, -38]$ \(y^2=x^3+15x-38\)
1152.j1 1152.j \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.207525233$ $[0, 0, 0, -30, -52]$ \(y^2=x^3-30x-52\)
1152.j2 1152.j \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.603762616$ $[0, 0, 0, 60, -304]$ \(y^2=x^3+60x-304\)
1152.k1 1152.k \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.466122448$ $[0, 0, 0, -30, 52]$ \(y^2=x^3-30x+52\)
1152.k2 1152.k \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.932244897$ $[0, 0, 0, 60, 304]$ \(y^2=x^3+60x+304\)
1152.l1 1152.l \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -120, 416]$ \(y^2=x^3-120x+416\)
1152.l2 1152.l \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 15, 38]$ \(y^2=x^3+15x+38\)
1152.m1 1152.m \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.816471691$ $[0, 0, 0, -84, -272]$ \(y^2=x^3-84x-272\)
1152.m2 1152.m \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.632943382$ $[0, 0, 0, 6, -20]$ \(y^2=x^3+6x-20\)
1152.n1 1152.n \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.955972523$ $[0, 0, 0, -24, 32]$ \(y^2=x^3-24x+32\)
1152.n2 1152.n \( 2^{7} \cdot 3^{2} \) $1$ $\Z/2\Z$ $1.911945047$ $[0, 0, 0, -9, -10]$ \(y^2=x^3-9x-10\)
1152.o1 1152.o \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -324, 2160]$ \(y^2=x^3-324x+2160\)
1152.o2 1152.o \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -54, -108]$ \(y^2=x^3-54x-108\)
1152.p1 1152.p \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -24, -32]$ \(y^2=x^3-24x-32\)
1152.p2 1152.p \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -9, 10]$ \(y^2=x^3-9x+10\)
1152.q1 1152.q \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -324, -2160]$ \(y^2=x^3-324x-2160\)
1152.q2 1152.q \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -54, 108]$ \(y^2=x^3-54x+108\)
1152.r1 1152.r \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -84, 272]$ \(y^2=x^3-84x+272\)
1152.r2 1152.r \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 6, 20]$ \(y^2=x^3+6x+20\)
1152.s1 1152.s \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -318, -2180]$ \(y^2=x^3-318x-2180\)
1152.s2 1152.s \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -228, -3440]$ \(y^2=x^3-228x-3440\)
1152.t1 1152.t \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -318, 2180]$ \(y^2=x^3-318x+2180\)
1152.t2 1152.t \( 2^{7} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -228, 3440]$ \(y^2=x^3-228x+3440\)
  Download to