Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1150.a1 |
1150d2 |
1150.a |
1150d |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{6} \cdot 5^{8} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$276$ |
$16$ |
$0$ |
$2.433218949$ |
$1$ |
|
$0$ |
$2160$ |
$1.237757$ |
$109348914285625/1472$ |
$1.03182$ |
$6.41376$ |
$[1, 0, 1, -72826, -7570452]$ |
\(y^2+xy+y=x^3-72826x-7570452\) |
3.8.0-3.a.1.1, 92.2.0.?, 276.16.0.? |
$[(-1403/3, 2099/3)]$ |
1150.a2 |
1150d1 |
1150.a |
1150d |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{2} \cdot 5^{8} \cdot 23^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$276$ |
$16$ |
$0$ |
$0.811072983$ |
$1$ |
|
$8$ |
$720$ |
$0.688450$ |
$243135625/48668$ |
$0.95262$ |
$4.56680$ |
$[1, 0, 1, -951, -9202]$ |
\(y^2+xy+y=x^3-951x-9202\) |
3.8.0-3.a.1.2, 92.2.0.?, 276.16.0.? |
$[(-23, 36)]$ |
1150.b1 |
1150a1 |
1150.b |
1150a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{20} \cdot 5^{10} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7200$ |
$1.673220$ |
$22180666338225/24117248$ |
$1.26739$ |
$6.64413$ |
$[1, -1, 0, -125117, 17049541]$ |
\(y^2+xy=x^3-x^2-125117x+17049541\) |
92.2.0.? |
$[]$ |
1150.c1 |
1150c1 |
1150.c |
1150c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{10} \cdot 5^{8} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1200$ |
$0.607901$ |
$53969305/23552$ |
$0.88421$ |
$4.35323$ |
$[1, 1, 0, -575, -2875]$ |
\(y^2+xy=x^3+x^2-575x-2875\) |
92.2.0.? |
$[]$ |
1150.d1 |
1150b1 |
1150.d |
1150b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$504$ |
$-0.124851$ |
$2109375/67712$ |
$1.22054$ |
$3.09023$ |
$[1, -1, 0, 8, -64]$ |
\(y^2+xy=x^3-x^2+8x-64\) |
8.2.0.a.1 |
$[]$ |
1150.e1 |
1150i1 |
1150.e |
1150i |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.096454741$ |
$1$ |
|
$12$ |
$2520$ |
$0.679868$ |
$2109375/67712$ |
$1.22054$ |
$4.46044$ |
$[1, -1, 1, 195, -7803]$ |
\(y^2+xy+y=x^3-x^2+195x-7803\) |
8.2.0.a.1 |
$[(69, 540)]$ |
1150.f1 |
1150g1 |
1150.f |
1150g |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{10} \cdot 5^{2} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$0.119656470$ |
$1$ |
|
$8$ |
$240$ |
$-0.196818$ |
$53969305/23552$ |
$0.88421$ |
$2.98301$ |
$[1, 0, 0, -23, -23]$ |
\(y^2+xy=x^3-23x-23\) |
92.2.0.? |
$[(-2, 5)]$ |
1150.g1 |
1150h1 |
1150.g |
1150h |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{20} \cdot 5^{4} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$0.045339353$ |
$1$ |
|
$14$ |
$1440$ |
$0.868501$ |
$22180666338225/24117248$ |
$1.26739$ |
$5.27391$ |
$[1, -1, 1, -5005, 137397]$ |
\(y^2+xy+y=x^3-x^2-5005x+137397\) |
92.2.0.? |
$[(39, 0)]$ |
1150.h1 |
1150e2 |
1150.h |
1150e |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{5} \cdot 5^{6} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$800$ |
$0.712811$ |
$545138290809/16928$ |
$1.08081$ |
$5.20480$ |
$[1, -1, 1, -4255, -105753]$ |
\(y^2+xy+y=x^3-x^2-4255x-105753\) |
2.3.0.a.1, 8.6.0.b.1, 92.6.0.?, 184.12.0.? |
$[]$ |
1150.h2 |
1150e1 |
1150.h |
1150e |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( - 2^{10} \cdot 5^{6} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$400$ |
$0.366237$ |
$-116930169/23552$ |
$1.03422$ |
$4.04857$ |
$[1, -1, 1, -255, -1753]$ |
\(y^2+xy+y=x^3-x^2-255x-1753\) |
2.3.0.a.1, 8.6.0.c.1, 46.6.0.a.1, 184.12.0.? |
$[]$ |
1150.i1 |
1150f2 |
1150.i |
1150f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{6} \cdot 5^{2} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.433037$ |
$109348914285625/1472$ |
$1.03182$ |
$5.04354$ |
$[1, 1, 1, -2913, -61729]$ |
\(y^2+xy+y=x^3+x^2-2913x-61729\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 92.2.0.?, 276.8.0.?, 1380.16.0.? |
$[]$ |
1150.i2 |
1150f1 |
1150.i |
1150f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( 2^{2} \cdot 5^{2} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.116269$ |
$243135625/48668$ |
$0.95262$ |
$3.19659$ |
$[1, 1, 1, -38, -89]$ |
\(y^2+xy+y=x^3+x^2-38x-89\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 92.2.0.?, 276.8.0.?, 1380.16.0.? |
$[]$ |