Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 114.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
114.b1 | 114c3 | \([1, 1, 1, -87552, -10007679]\) | \(74220219816682217473/16416\) | \(16416\) | \([2]\) | \(240\) | \(1.1014\) | |
114.b2 | 114c2 | \([1, 1, 1, -5472, -158079]\) | \(18120364883707393/269485056\) | \(269485056\) | \([2, 2]\) | \(120\) | \(0.75487\) | |
114.b3 | 114c4 | \([1, 1, 1, -5312, -167551]\) | \(-16576888679672833/2216253521952\) | \(-2216253521952\) | \([2]\) | \(240\) | \(1.1014\) | |
114.b4 | 114c1 | \([1, 1, 1, -352, -2431]\) | \(4824238966273/537919488\) | \(537919488\) | \([4]\) | \(60\) | \(0.40829\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 114.b have rank \(0\).
Complex multiplication
The elliptic curves in class 114.b do not have complex multiplication.Modular form 114.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.