Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-95x-399\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-95xz^2-399z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-123795x-16762194\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(-6, 3\right) \)
Integral points
\( \left(-6, 3\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 114 \) | = | $2 \cdot 3 \cdot 19$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $18468 $ | = | $2^{2} \cdot 3^{5} \cdot 19 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{96386901625}{18468} \) | = | $2^{-2} \cdot 3^{-5} \cdot 5^{3} \cdot 7^{3} \cdot 19^{-1} \cdot 131^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $-0.18069063516102276301230543226\dots$ | ||
Stable Faltings height: | $-0.18069063516102276301230543226\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $1.5271441130311838561374190637\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 2 $ = $ 2\cdot1\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 0.76357205651559192806870953186 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 20 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$3$ | $1$ | $I_{5}$ | Non-split multiplicative | 1 | 1 | 5 | 5 |
$19$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.4 |
The image of the adelic Galois representation has level $456$, index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 194 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 154 & 1 \\ 151 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 453 & 4 \\ 452 & 5 \end{array}\right),\left(\begin{array}{rr} 229 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 289 & 172 \\ 56 & 399 \end{array}\right)$
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 19 |
---|---|---|---|
Reduction type | nonsplit | nonsplit | split |
$\lambda$-invariant(s) | 0 | 0 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 114.a
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.57.1-228.1-o3 |
$4$ | 4.0.3648.1 | \(\Z/4\Z\) | Not in database |
$8$ | 8.4.35119561982976.11 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.43237380096.1 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.2.369375586992.1 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.